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Institut Telecom, Telecom ParisTech, CNRS/LTCI

firstname.lastname@telecom-paristech.fr

ABSTRACT

Music Information Retrieval systems are commonly
built on a feature extraction stage. For applications involv-
ing automatic classification (e.g. speech/music discrimi-
nation, music genre or mood recognition, ...), traditional
approaches will consider a large set of audio features to be
extracted on a large dataset. In some cases, this will lead to
computationally intensive systems and there is, therefore,
a strong need for efficient feature extraction.

In this paper, a new audio feature extraction software,
YAAFE 1 , is presented and compared to widely used li-
braries. The main advantage of YAAFE is a significantly
lower complexity due to the appropriate exploitation of re-
dundancy in the feature calculation. YAAFE remains easy
to configure and each feature can be parameterized inde-
pendently. Finally, the YAAFE framework and most of its
core feature library are released in source code under the
GNU Lesser General Public License.

1. INTRODUCTION AND RELATED WORK

Most Musical Information Retrieval (MIR) systems include
an initial low-level or mid-level audio feature extraction
stage. For applications involving automatic classification
(e.g. speech/music discrimination, music genre or mood
recognition,...), traditional approaches consider a large set
of audio features to be extracted on a large dataset, possi-
bly combined with early temporal integration2 . The im-
portance of the feature extraction stage therefore justifies
the increasing effort of the community in this domain and
a number of initiatives related to audio features extraction
have emerged in the last ten years, with various objectives.

For example, Marsyas is a software framework for au-
dio processing [1], written in C++. It is designed as a
dataflow processing framework, with the advantage of ef-
ficiency and low memory usage. Various building blocks

1 http://yaafe.sourceforge.net
2 Temporal integration is the process of summarizing features values

over a segment or a texture window by computing mean, standard devia-
tion, and/or any relevant statistical function. The termearly refers to an
integration performed before the classification step.
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are available to build real-time applications for audio anal-
ysis, synthesis, segmentation, and classification. Marsyas
is widely and successfully used for various tasks.

Note however, that the audio feature extraction (bex-
tract program) is only a small component of the whole
Marsyas’s framework. Extracted features are written in
ARFF format, and can be directly reused with the WEKA
[6] machine learning toolkit. Some classic features are
available out-of-the-box. The user can select which fea-
tures to extract, but parameters like frame size and overlaps
are global. The user also has low control upon temporal in-
tegration.

VAMP Plugins3 is the specification of a C++ Appli-
cation Programming Interface (API) for plugins allowing
extraction of low level features on audio signals. The very
permissive BSD-style license permits the user to develop
his own plugin or application that uses existing plugins.
Several plugin libraries have been developed by various
research labs. VAMP Plugins comes with the Sonic Visu-
alizer [2] application, a tool for viewing contents of music
audio files together with extracted features.

Batch feature extraction using VAMP Plugins can be
done with the command line tool Sonic annotator4 . Users
can declare features to extract in RDF files5 with precise
control over each feature parameter. Output can be written
to CSV6 or RDF files. Early temporal integration is lim-
ited to predefined segment summaries, and it is not possi-
ble to perform temporal integration over overlapping tex-
ture windows. VAMP Plugins API allows the development
of independent libraries, but prevents the development of
new plugins that would depend on already existing plug-
ins.

Another example, the MIR toolbox, is a Matlab toolbox
dedicated to musical feature extraction [3]. Algorithms are
decomposed into stages, that the user can parameterize.
Functions are provided with a simple and adaptive syn-
tax. The MIR toolbox relies on the Matlab environment
and therefore benefits from already existing toolboxes and
built-in visualization capabilities, but suffers from memory
management limitations.

Other projects also exist. jAudio [5] is a java-based au-
dio feature extractor library, whose results are written in

3 http://vamp-plugins.org/, Queen Mary, University of
London.

4 http://www.omras2.org/SonicAnnotator
5 Resource Description Framework is a semantic web standard.
6 Comma Separated Values
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XML format. Maaate is a C++ toolkit that has been de-
veloped to analyze audio in the compressed frequency do-
main. FEAPI [4] is a plugin API similar to VAMP. MPEG7
also provides Matlab and C codes for feature extraction.
Lately, MIR web services have surfaced. For instance, the
Echo Nest7 provides a web service API for audio feature
extraction. Input files are submitted through the web, and
the user receives a XML description.

Whatever the objectives are, the computational
efficiency of the feature extraction process remains of ut-
most interest. It is also clear that many features share com-
mon intermediate representations, such as spectrum mag-
nitude, signal envelope and constant-Q transform. As al-
ready observed for the VAMP plugins with the Fast Fourier
Transform (FFT), performances can be drastically
improved if those representations are computed only once
and this especially when large feature sets are extracted.
Note also that this philosophy can be extended to the dif-
ferent transformations (such as derivatives) of a given fea-
ture.

YAAFE has therefore been created both to get the best
of the previous tools and to address their main limitations
in situations where a large feature set needs to be extracted
from large audio collections with different parameteriza-
tions. In particular, YAAFE has been designed with the
following requirements in mind:

• Computational efficiency with an appropriate exploita-
tion of feature calculation redundancies.

• Usage simplicity with a particular attention to the fea-
ture declaration syntax.

• Capability to process very long audio files.

• Storage efficiency and simplicity.

The paper is organized as follows: the architecture of
YAAFE is detailed in section 2. A detailed benchmark is
then proposed in section 3. Finally, we suggest some con-
clusions and future work in section 4.

2. YAAFE

2.1 Overview

YAAFE is a command line program. Figure 1 describes
how YAAFE handles feature extraction. The user has to
provide the audio files and a feature extraction plan. The
feature extraction plan is a text file where the user declares
the features to extract, their parameters and transforma-
tions (see section 2.2).

To take advantage of feature computation redundancy,
YAAFE proceeds in two main stages. In a first stage, a
parser analyzes the feature extraction plan in order to find
common computational steps (implemented in C++ com-
ponents), and a reduced dataflow graph is produced. Then
in a second stage, feature extraction is applied to the given
audio files according to the reduced dataflow graph and re-
sults are stored in HDF5 files (see section 2.6).

7 http://echonest.com/

Figure 1. YAAFE internals overview.

Python is preferred to C++ for implementing the feature
library and the parser, because the Python object model
and reflection allow more concise and readable code to be
written. The dataflow engine and the component library
have been developed in the C++ language for performance.

YAAFE can be extended. Anyone can create their own
extension which consists of a feature library and a compo-
nent library. Provided extensions are loaded at runtime.

2.2 Feature extraction plan

2.2.1 Features

YAAFE feature extraction plan is a text file that describes
the features to extract. Each line defines one feature, with
the following syntax:

name: Feature param=value param=value

An example:

m: MFCC blockSize=1024 stepSize=512
z: ZCR blockSize=1024 stepSize=512
l: LPC LPCNbCoeffs=10
ss: SpectralSlope

The example above will produce 4 output datasets (see
section 2.6) namedm, z, l and ss, which will hold fea-
tures MFCC8 , ZCR9 , LPC10 , SpectralSlope with given
parameters. Missing parameters are automatically set to a
predefined default value.

2.2.2 Transformations and temporal integration

One can also use spatial or temporal feature transforms,
such as Derivate11 , StatisticalIntegrator12 , or SlopeInte-

8 Mel-Frequency Cepstral Coefficients
9 Zero Crossing Rate

10 Linear Prediction Coefficients
11 Derivate computes first and/or second derivatives.
12 StatisticalIntegrator computes mean and standard deviation over the

given frames.
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Figure 2. Automatic redundancy removal performed when
parsing feature extraction plan. Fr(N) boxes are decompo-
sitions into analysis frames of size N. Step size is omitted
but assumed equal.

grator13 to enrich his feature extraction plan. For exam-
ple, a plan to extract MFCCs along with derivatives and
perform early integration over 60 frames will look like this:

m: MFCC > StatisticalIntegrator NbFrames=60
m1: MFCC > Derivate DOrder=1 ...

> StatisticalIntegrator NbFrames=60
m2: MFCC > Derivate DOrder=2 ...

> StatisticalIntegrator NbFrames=60

Obviously,m, m1, m2are all based onMFCC compu-
tation which should be computed only once. This is dis-
cussed in the next section.

2.3 Feature plan parser

Within YAAFE, each feature is defined as a sequence of
computational steps. For example, MFCC is the succes-
sion of steps: Frames, FFT, MelFilterBank, Cepstrum. The
same applies to feature transforms and temporal integra-
tors.

As shown in Figure 2, the feature plan parser decom-
poses each declared feature into steps and groups together
identical steps which have the same input into a reduced
directed graph of computational steps.

The reduced graph can be dumped into adot file, so
an advanced user can discern how the features are really
computed.

2.4 Dataflow engine

Each computational step is implemented in a C++ compo-
nent which performs computation on a data block. Specific

13 SlopeIntegrator computes the slope over the given frames.

Figure 3. Temporally aligned frame decomposition for
different frame sizes A and B, with same step sizes.

components manage audio file reading and output file writ-
ing.

Thedataflow engineloads components, links them ac-
cording to the given dataflow graph, and manages compu-
tations and data blocks. Reading, computations and writ-
ing is done block by block, so that arbitrarily long files can
be processed with a low memory occupation.

2.5 Feature timestamps alignment

In a feature extraction plan, each feature may have its own
analysis frame size and step size. Some features require
longer analysis frame sizes than others. As we intended to
use YAAFE as input for classification systems, we have en-
sured that extracted features are temporally aligned. This
is especially important with operations like the Constant-Q
Transform (CQT) that may have very large analysis frames.

YAAFE addresses this issue as follows. We assume that
when a feature is computed over an analysis frame, the re-
sulting value corresponds to the time of the analysis frame
center. Then, beginning with a frame centered on the sig-
nal start (left padded with zeros) ensures that all features
with the same step size will be temporally aligned (see
Figure 3).

A feature may also have an intrinsic time-delay. For
example, when applying a derivative filter, we want the
output value to be aligned with the center of the deriva-
tive filter. The design of YAAFE ensures that this is han-
dled properly and that output features will be temporally
aligned.

YAAFE only deals with equidistantly sampled features.
However, some features like onsets have a natural repre-
sentation which is event-based. In the current version,
event-based features are represented as equidistantly sam-
pled features for which the first dimension is a boolean
value denoting the presence of an event.

2.6 Output format

YAAFE outputs results in HDF5 files14 . Other output for-
mats will be added in the future. The choice of the HDF5
format has initially been motivated by storage size and I/O
performance. HDF5 allows for on-the-fly compression.
Results are stored as double precision floating point num-
bers hence with no precision loss.

HDF5 is a binary format designed for efficient storage
of large amounts of scientific data. HDF5 files can be read

14 Hierarchical Data Format,http://www.hdfgroup.org/HDF5/
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in the Matlab environment through built-in functions15 ,
and in the Python environment with the h5py package16 .
HDF5 files are platform independent, so they can be easily
shared.

A HDF5 file can hold several datasets organized into a
hierarchical structure. A dataset can be a table with several
columns (or fields) of different data types, or simply a 2-D
matrix of a specific data type. Attributes can be attached
to datasets, an attribute has a name and a value of any data
type.

YAAFE creates one HDF5 file for each input audio file.
For each feature declared in the feature extraction plan, one
dataset is created, with some attributes attached such as
the feature definition, the frame size, the step size and the
sample rate.

2.7 Availability and License

The YAAFE framework and a core feature library are re-
leased together under the GNU Lesser General Public Li-
cense, so that it can freely be reused as a component of
a bigger system. The core feature library contains sev-
eral spectral features, Mel-Frequencies Cepstrum Coeffi-
cients, Loudness, Autocorrelation, Linear Prediction Coef-
ficients, Octave Band Signal Intensities, OBSI ratios, am-
plitude modulation (tremolo and graininess description),
complex domain onset detection [7], Zero Crossing Rate.
Derivative and Cepstral transforms as well as statistical,
slope and histogram early integrators are also provided.
YAAFE is available for Linux platforms, source code can
be downloaded17 .

A separate feature library will be available in binary
version and for non commercial use only. It will provide
Constant-Q Transform, Chromas [8], Chord detection [9],
Onset detection [10], Beat histogram summary [11]. An
implementation of CQT with normalization and kernels
temporal synchronicity improvements [12] from reference
implementation18 is proposed.

3. BENCHMARK

We have run a small benchmark to compare YAAFE with
Marsyas’ bextract and Sonic Annotator. The objective is to
compare the design of the three system, and not the algo-
rithms used to compute feature. We chose few similar and
well-defined features, available for the three systems for
which we compared CPU time, memory occupation and
output size when extracting those features on the same au-
dio collection.

3.1 Protocol

We chose to extract the following features: MFCC (13 co-
efficients), spectral centroid, spectral rolloff, spectral crest
factor, spectral flatness, and zero crossing rate. Features

15 See thehdf5info, hdf5readand hdf5write functions. YAAFE also
provide useful scripts to directly load feature data into a matrix.

16http://code.google.com/p/h5py/
17http://yaafe.sourceforge.net
18 B.Blankertz, “The Constant Q Transform”, http://wwwmath.uni-

muenster.de/logik/Personen/blankertz/constQ/constQ.html

S.A. Marsyas YAAFE
CPU time 52m05s 24m21s 6m34s
RAM used 14.0 Mbs 10.6 Mbs 15.5 Mbs
Output format CSV ARFF HDF5
Output size 1.74 Gbs 2.7 Gbs 1.22 Gbs
Feature dim. 16 16 (32) 19

Table 1. Feature extraction with Sonic Annotator with
VAMP libxtract plugins, Marsyas’s bextract and YAAFE.
All features are extracted simultaneously. Audio collection
is 40 hours of 32 KHz mono wav files.

Feature S.A. Marsyas YAAFE
MFCC 25m06s 19m28s 2m22s
Centroid 12m04s 15m42s 3m55s
Rolloff 12m11s 15m51s 3m14s
ZCR 3m41s 10m20s 0m57s
Total 53m02s 61m21s 10m28s

Table 2. CPU times for single feature extraction on the
same collection as Table 1.

like chroma or beat detection have been avoided because
the associated algorithms can be very different. In the case
of Sonic Annotator, all features are available in theVamp
libxtract plugins19 [13]. Early temporal integration is not
computed.

We ran the feature extraction over about 40 hours of 32
KHz mono wav files (8.7 Gbs). The collection is composed
of 80 radio excerpts of about 30mn each. The measures
have been done on a Intel Core 2 Duo 3GHz machine, with
4 Gbs of RAM, under the Debian Lenny operating system.
We checked that all systems used one core only. The RAM
used has been measured with theps mem.py script20 .

We first ran the benchmark measuring the extraction of
all features simultaneously. Then we ran the benchmark a
second time measuring the extraction of each feature inde-
pendently.

3.2 Results

The results are described in Table 1 and Table 2. It is im-
portant to note some differences between the 3 systems that
influence the results. Firstly, we could not prevent Marsyas
from performing temporal integration, so we reduced inte-
gration length to 1. Consequently, the output generated
by Marsyas has 32 columns: 16 columns of feature data
(mean) and 16 columns of zeros (standard deviation). This
explains why Marsyas has a larger output size. Secondly,
YAAFE extracts spectral spread, skewness and kurtosis to-
gether with the spectral centroid. This explains why output
feature dimension is 19 for YAAFE and 16 for other sys-
tems.

Due to those differences the measures must be taken
with caution. We can say that all systems performed well.

19 The VAMP libxtract plugins rely on the libxtract library:
http://libxtract.sourceforge.net/

20http://www.pixelbeat.org/scripts/ps mem.py
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YAAFE
CPU time 11m15s
RAM used 30.3 Mbs
Output format HDF5
Output size 0.64 Gbs
Feature dim. 288

Table 3. Large feature set extraction with YAAFE. Audio
collection is 40 hours of 32 KHz mono wav files.

They all succeed at extracting features over audio files of
30 minutes length and with low memory occupation.

The sum of single extraction times in Table 2 compared
to the extraction time in Table 1 shows that Sonic Annota-
tor does not exploit computation redundancy. The VAMP
plugin API allows for computing feature in the frequency
domain, but this is not done by Vamp libxtract plugins.
That explains why Sonic Annotator requires more CPU
time than others.

Marsyas performance clearly suffers from writing 16
column of zeros. For the evaluated task, the CPU times in
Table 1 show that YAAFE tends to be faster than Marsyas.

As Sonic Annotator stored the timestamp in each output
files (one per feature), and half of Marsyas’ output is addi-
tional zeros, we can say that Sonic Annotator and Marsyas
outputs are roughly equivalent in space. This is not a sur-
prise as both CSV and ARFF format are text formats. Us-
ing HDF5 format, YAAFE stores more feature data, with
no precision loss, using less space.

3.3 Extracting many features

YAAFE is designed for extracting a large number of fea-
tures simultaneously. To check how it performs in such sit-
uation we ran YAAFE a second time under the same con-
ditions but with a larger feature extraction plan.

In this run, we extracted MFCCs, various spectral fea-
tures, loudness, loudness-based sharpness and spread, and
zero crossing rate. For each feature except zero crossing
rate, we added first and second derivatives. Then we per-
formed early temporal integration by computing mean and
standard deviation over sliding windows of 1 second with
a step of 0.5 second. The total output dimension is 288.

The results are presented in Table 3. It should be em-
phasized that temporal integration is done, so the output
size is much smaller than in the previous run. As a larger
feature set is extracted, the dataflow graph is larger and
uses more RAM. The CPU time shows that YAAFE re-
mains very efficient in this situation.

4. CONCLUSIONS AND FUTURE WORK

In this paper, a new audio feature extraction software,
YAAFE, is introduced. YAAFE is especially efficient in
situations where many features are simultaneously
extracted over large audio collections. To achieve this,
the feature computation redundancies are appropriately ex-
ploited in a two step extraction process. First, the feature

extraction plan is analyzed, each feature is decomposed
into computational steps and a reduced dataflow graph is
produced. Then, a dataflow engine processes computations
block by block over the given audio files.

YAAFE remains easy to use. The feature extraction
plan is a text file where the user can declare features to
extract, transformations and early temporal integration ac-
cording to a very simple syntax. YAAFE has already been
used in Quaero project internal evaluation campaigns for
the music/speech discrimination and musical genre recog-
nition tasks.

Future plans include the extension of the toolbox with
additional high level features such as fundamental
frequency estimator, melody detection and tempo estima-
tor and the extension to alternative output formats.
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[12] J.Prado, “Transformée à Q constant”,technical report
2010D004, http://service.tsi.telecom-paristech.fr/cgi-
bin/valipubdownload.cgi?dId=185, Institut TELE-
COM, TELECOM ParisTech, CNRS LTCI, 2010.

[13] J. Bullock, “Libxtract: A lightweight library for audio
feature extraction,” in Proceedings of the International
Computer Music Conference, 2007.

446

11th International Society for Music Information Retrieval Conference (ISMIR 2010)




