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ABSTRACT

New applications of Electroencephalographic recording (EEG)

require light and easy-to-handle equipment involving pow-

erful algorithms of artifact removal. In our work, we exploit

informed source separation methods for artifact removal in

EEG recordings with a low number of sensors, especially in

the extreme case of single-channel recording, by exploiting

prior knowledge from auxiliary lightweight sensors captur-

ing artifactual signals. To achieve this, we propose a method

using Non-negative Tensor Factorization (NTF) in a Gaus-

sian source separation framework that proves competitive

against the classic Independent Component Analysis (ICA)

technique. Additionally the both NTF and ICA methods are

used in an original scheme that jointly processes the EEG

and auxiliary signals. The adopted NTF strategy is shown to

improve the source estimates accuracy in comparison with

the usual multi-channel ICA approach.

Index Terms— EEG, artifact removal, nonnegative ma-

trix/tensor factorization, source separation, Gaussian model.

1. INTRODUCTION

Electroencephalographic (EEG) recordings may be strongly

disturbed by endogenous brain activities and extraneous en-

vironmental and physiological artifacts such as power grid

noise, eye movements, heart beat or muscle activities. There-

fore, the cerebral signal of interest mixed to these artifacts

could be difficult to identify and analyse in the EEG data

given the overlapping of signals [8].

Moreover, new applications of EEG recording, for in-

stance brain-computer interfaces or human-activity monitor-

ing, pose new challenges in terms of artifact removal as they

call for fully automatic techniques, that would be additionally

amenable to real-time processing. Among these applica-

tions, we are interested in the general public applications
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where the EEG setup is to be maintained as light as possible

and ideally be limited to a single electrode, while allowing

the use of other types of lightweight sensors, for example

Electromyographic (EMG), Electrocardiographic (ECG), or

inertial measurement sensors. This paper extends our previ-

ous study [4] focusing on ocular artifacts to multiple artifact

removal. In the latter, it was shown that single-channel EEG

Non-negative Matrix Factorization (NMF) performs as well

as multi-channel EEG Independent Component Analysis

(ICA). Both methods properly exploit prior knowledge on

artifactual signals from auxiliary channels recording, intro-

duced in the learning process through the initialization of

the matrix decomposition, to guide the artifact rejection and

hence the identification of the cerebral signal of interest.

Significant improvements to the previous scheme are in-

troduced in this paper as we propose a novel artifact removal

scheme that jointly processes single-channel EEG and artifact

auxiliary signals using Non-negative Tensor Factorization

(NTF). This is motivated by the fact that the single-channel

EEG observations may be considered as a linear mixture of

the cerebral sources of interest and the various artifactual

sources.

Given our data configuration, single-channel EEG and

artifact auxiliary signals are processed under a parallel fac-

torization analysis where each spectrogram represents a slice

of a third order tensor. We additionally challenge this method

with a particular ICA approach, similar in spirit to our NTF

scheme, where the single-channel EEG data is processed

jointly with multiple auxiliary channels.

To our knowledge, EEG artifact removal within a joint

processing framework of single-channel EEG and auxiliary

recordings is completely novel. Also, while NTF has already

been used for EEG-feature extraction [7], its use for EEG ar-

tifact removal within a Gaussian source separation framework

is novel.

In Section 2, we briefly recall the statistical NTF ap-

proach and we describe our algorithm aiming at recovering

both cerebral and artifactual sources in single-channel EEG
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recordings. Section 3 assesses and compares the four stud-

ied algorithms : single-channel EEG NMF, multiple-channel

EEG ICA, and NTF and ICA based on single-channel EEG

and multiple auxiliary channels. Note that we use the Itakura-

Saito divergence for the NMF and NTF since this cost func-

tion has proven effective in our previous study [4].

A further extension to our previous study consists of con-

ducting our experimental validation with multiple artifacts

on simulated datasets. This study focuses on three kinds

of physiological artifacts, namely ocular, cardiac and facial-

movement artifacts and investigates the quality of the source

estimates depending on the position of the electrode used

to record the EEG signals, considering that the intensity of

the artifactual disturbances on the cerebral activities changes

through the brain surface.

2. NTF-BASED ARTIFACT REJECTION

For a complete description of how informed NMF/NTF is

used in order to perform EEG artifact rejection following a

probabilistic source separation paradigm, we refer the reader

to [4]. We use Itakura-Saito divergence (IS) given its link with

maximum likelihood estimation in a Gaussian context and

since successful results have been previously obtained with

this cost function [4]. We hereafter, first, briefly recall the

general principle of the Itakura-Saito-based NTF decomposi-

tion. Then, we describe the algorithm applied to our particular

data configuration, that is single-channel EEG accompanied

with auxiliary signals describing the sources of artifacts.

2.1. IS-based NTF-decomposition

Consider I observable time-series x̃ (t, i), each x̃ ( · , i) corre-
sponding to one of the EEG sensors. For a given sensor i, we

assume that each x̃ ( · , i) is the sum of J underlying signals

ỹ ( · , i, 1) , . . . , ỹ ( · , i, J) which are called latent variables in
this study.

The NTF technique operates in the Time-Frequency

(TF) domain of the signals considered. More specifically,

x ( · , · , i) will denote the Short Term Fourier Transform

(STFT) of the mixture x̃ ( · , i), so that x (f, n, i) ∈ C is its

spectrum at frequency bin f for frame index n. Similarly,

y (f, n, i, j) denotes the STFT of the ith channel of latent

component j at TF bin (f, n). All signals are supposed to

have the same number F of frequency indices and the same

numberN of frames.

The IS-NTF model approximates the power spectrograms

|x ( · , · , i)
2
| by a linear combination of non-negative rank-

1 elementary spectrogramsWjQijH
T
j , corresponding to one

given spectral template Wj modulated by a time-varying ac-

tivation gain Hj up to a nonnegative scaling factor Qij . Wj

and Hj have been gathered as the J columns of matrices W

andH of respective dimensions F ×J andN ×J . At TF bin

(f, n), the Power Spectral Density (PSD) of the ith channel

is modeled by :

|x (f, n, i)
2
| ≈ ṽ (f, n, i) =

∑

j

WfjHnjQij , (1)

Learning such a model (1) through maximum likelihood

estimation is equivalent to minimizing the Itakura-Saito di-

vergence1 between the power spectrogram of the observations

and the model [1, 9] :

{

Ŵ , Ĥ, Q̂
}

=

argmin
W,H,Q

∑

f,n,i

dIS

(

|x (f, n, i)|
2
‖ṽ (f, n, i)

)

(2)

To ensure that the latent components obtained that way

correspond to the latent components we are looking for, we

initialize the model parameters as described hereafter.

2.2. Informed NTF initialization

To aid the rejection of artifacts in single-channel EEG analy-

sis, we inform the learning process by initializing the model

parameters with the results of the IS-NMF decomposition of

such auxiliary signals [2].

The algorithm proceeds in three steps :

1. for each auxiliary signal r, representing a potential ar-

tifactual source in EEG signal, we perform a IS-NMF

decomposition :

ṽr (f, n) =
∑

j

W r
fjH

r
nj , (3)

2. a) we recall that the third order tensor to approxi-

mate is composed of the single-channel EEG and

auxiliary spectrograms. Before learning the IS-

NTF model, we initialize the corresponding sub-

parts of the spectral and activation gain matrices

with the Kr artifactual components W r
j H

r
j esti-

mated in step 1. We use both the basis spectra

W r and activation gainHr matrices for initializa-

tion to improve, during the learning process, the

identification of the artifactual components both

in auxiliary and single-channel EEG signals. The

remaining K −
∑

r K
r components of the EEG

NTF decomposition are randomly initialized with

K being the total number of sources, cerebral and

artifactual

b) we perform the learning process of the IS-NTF

model

1The Itakura-Saito divergence between two nonnegative scalars a and b

is defined as dIS (a | b) = a

b
− log a

b
− 1.



3. the artifacts and decontaminated EEG signals are re-

constructed through WIENER filtering : .

ŷ (f, n, i, j) =
WfjHnjQij

∑J

j=1
WfjHnjQij

x (f, n, i) . (4)

3. EXPERIMENTS AND RESULTS

We now present results on EEG signals corrupted by three

kinds of artifacts : ocular, cardiac and motion artifacts. As in

our previous study, we aim at proving the efficiency of NMF

in removing these artifacts in single channel EEG analysis

comparing to 4-channel based ICA source separation since

the minimum number of EEG channels that need to be used

to handle L sources of artifacts must be L + 1 (one channel

per artifact component plus one for EEG useful information).

We are also interested in proving the performance gain of a

IS-NTF and ICA approaches analysing conjointly EEG and

auxiliary signals.

3.1. Simulations

The EEG and artifactual auxiliary signals are simulated from

the public DEAP dataset2, a database for emotion analysis us-

ing a wide-range of physiological signals [6]. The EEG and

13 peripheral physiological signals of 32 participants were

recorded at a sampling rate of 512 Hz during the viewing

of 40 one-minute long music videos preceded by 3-second

baselines. Raw EEG data were recorded with 32 active AgCI

electrodes placed according to the international 10-20 system.

In order to be able to objectively evaluate our systems we

create contaminated EEG signals in a controlled manner in

such a way to simulate realistic recordings. Thus, we first ex-

tract from the DEAP dataset each type of signal, i.e. EEG

and artifacts, each from a different subject, so as to avoid

unwanted correlated signals. Then, we process these sig-

nals in order to remove artifacts from the EEG recordings

and potential cerebral or noisy activities in auxiliary physi-

ological recordings. The raw EEG signals have actually al-

ready been preprocessed in the public DEAP dataset (down-

sampled to 128 Hz) removing in particular ocular and motion

artifacts3[3, 5]. We further process these signals to correct

for other sources of artifacts such as cardiac artifacts or drifts

discovered by visual inspection of the ICA component signals

obtained using the artifact removal procedure provided by the

EEGlab toolbox4.

Among the different peripheral nervous system signals

(available at a sampling rate of 128 Hz in the DEAP dataset),

we choose those recorded by the plethysmograph, the elec-

tromyogram of the Zygomaticus muscle and the electrooccu-

logram sensors. The plethysmograph sensor measures indi-

rectly the heart rate through the blood volume variations in

2http://www.eecs.qmul.ac.uk/mmv/datasets/deap/
3http://kasku.org/projects/eeg/aar.htm
4http://sccn.ucsd.edu/eeglab/

the participant’s thumb. The electromyogram sensor of the

Zygomaticus major monitors the participant laughs or smiles

during music listening. The electroocculogram sensor cap-

tures eye movements and blinks. We also filter the auxiliary

signals with a 3-order Butterworth filter in order to isolate the

artifact electrical signature by removing brain signal relative

to the artifact. All signals are scaled between −50µV and

+50µV .

The simulated contaminated EEG signal is then obtained

by applying a mixing matrix to the previous signals. We have

decided to simulate four situations corresponding to four EEG

sensor locations : temporal (T7 electrode), frontal (Fp2 elec-

trode), occipital (02 electrode) and central (Cz electrode). The

impact of each artifact on each EEG channel location are pre-

sented in the table below under the form of noise-to-signal

ratios, that is the ratio between the amplitudes of the EEG

and artifactual signals.

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Location

Artifacts
Ocular Motion Cardiac

Temporal 1.5 4.5 1.0

Frontal 3.0 4.0 0.1

Central 0.1 3.0 0.1

Occipital 0.1 4.0 0.1

Table 1. Artifact-to-EEG ratio for ocular, motion and cardiac

artifacts in four brain locations: left temporal, right frontal,

central and right occipital electrodes.

Given the length of the signals, we build 10 simulated

datasets, each one including the EEG and auxiliary signals

of four 63-second long videos.

3.2. Validation procedure

As in our previous study [4], multiple EEG channel FastICA

and single EEG channel NMF methods integrate prior infor-

mation on artifacts by initializing a part of the mixture model

with the given auxiliary signals to guide the source learning

process. For FastICA, this merely consists in initializing each

dedicated artifact component of the mixing matrix with the

corresponding auxiliary signal and the other components are

generated randomly. For NMF, the initialization is done as

described in [4].

Single EEG channel FastICA and NTF methods embed

additional prior knowledge of the artifacts by jointly process-

ing the EEG and the auxiliary data with a matrix decompo-

sition in the temporal domain for the former and a tensor de-

composition in the spectral domain for the latter as described

in section 2.2.

The validation procedure includes two steps : a training

step during which the hyperparameters of each source sepa-

ration method are learned on one half of the datasets and a

test step during which the best hyperparameter is tested on

the other half of the datasets. Ten models (each with 100



multiplicative-update iterations), each of themwith a different

initialization, have been learned on both EEG- and artifact-

based NMF/NTF models and only those yielding the smallest

cost-function value have been selected.

While we necessarily estimated only 4 components for

ICA, we have been able to test a range of hyperparameters

for NMF/NTF by varying the number of components asso-

ciated to the artifact on the one hand (i.e. 2, 5, 8, 10, 13),
and the total number of components on the other hand (i.e.

16, 24, 32, 40, 48) thus defining, by subtraction, the number

of EEG sources.

To compare the results of the different methods, we used

the correlation similarity measures between each estimated

signal and the true signal used to simulate the mixture.

In order to solve the ambiguity in the order of the source

signals estimated by FastICA, we rely on the the mutual infor-

mation similarity measure, which is the assessment measure

of the ICA, between each estimated source signal and the dif-

ferent recorded signals (EEG and auxiliary).

3.3. Results

In figure 1, we present the results of the four methods on

datasets simulated with EEG data coming from three different

subjects to study the robustness of our methods.

Multiple EEG channel ICA achieves poor signal recovery

except in the frontal location case where the denoised EEG

signal is well recovered (see Figure 1(a)). In this situation,

the problem is easier since the EEG recordings are mainly

disturbed by a single artifact relating to the EMG signal. Sin-

gle EEG channel NMF significantly outperforms the denoised

EEG signals recovery obtained with multiple EEG channel

ICA, which is probably induced by a slightly better artifact

signal recovery, particularly with respect to the ECG-based

artifact (see Figure 1(b)).

The results of single EEG channel ICA (using auxiliary

artifact signals) are comparatively good with respect to the

previous methods and stable across the different brain loca-

tions, around 0.6 correlation for the EOG- and EMG-related

artifact estimations and 0.8 for the denoised EEG and ECG-

based artifact estimations (see Figure 1(c)). Single EEG chan-

nel NTF proves to be the best strategy to recover the denoised

EEG signal, with a cross-correlation close to 1, arising from

the accurate estimations of the dominating artifactual signals

(having an amplitude greater or equal to the EEG source sig-

nal amplitude.

For all the methods except single EEG channel ICA, we

note that the quality of the artifactual signal recovery depends

both on the artifact-to-EEG amplitude ratio and the complex-

ity of the mixture linked to the number and the intensity of the

artifacts. For instance, in the temporal case, the three artifacts

noticeably impact the cerebral activity while in the central

case, only the EMG-based artifact significantly impacts the

EEG recordings (see Table 1). The scale invariance property

(a)

(b)

(c)

(d)

Fig. 1. Average cross-correlation measures obtained with the

different techniques trough the 10 datasets for each subject

and on each brain location. It represents the recovery quality

of ocular (in red line), motion (in blue line), cardiac (in black

line) artifacts- and denoised EEG based signals respectively

noted EOG, EMG, ECG and DEN in the legend.



of the Itakura-Saito cost function in NMF/NTF approaches is

useful when analyzing signals of different scales, however it

is here found to reach its limits as it fails to decompose some

of the source signals that are weakly present in the mixture.

All the methods are robust to the inter-subject variance

leading to similar results for the three subjects except for

EOG-related artifacts and more specifically with the first

subject. This inter-subject variability may be explained by

inter-subject differences in the ocular artifact processing of

EEG recordings performed with a blind automatic EOG-

related artifact rejection method [3]. This study shows that

this blind method is less acurate than an informed method

using individual EOG reference signal.

Below, the figure 3.3 provides a visual insight into the sig-

nal recovery quality of all the studied informed source sepa-

ration methods. The resulting signal decompositions on two

pieces of a single EEG channel recording located in the tem-

poral cerebral area improve our understanding of the previous

numerical results.

The temporal case is particularly relevant to compare the

methods since it best represents all the artifacts. The first

recording piece is an example of good recovery while the sec-

ond is a more difficult example.

In the former case, we outline three highlights : first,

the estimates of EOG- and ECG-based artifacts become more

accurate in the order of appearance of the methods, that is

multiple EEG channel ICA, single EEG channel NMF, single

EEG channel ICA and single EEG channel NTF. Second, the

EMG-related artifact is well recovered by NMF and NTF ap-

proaches contrary to ICA methods that completely fail. On

the other hand, the NMF and NTF approaches seem to cap-

ture a part of the EMG-based artifact in the EOG-based ar-

tifact estimate. This is particularly visible at the end of the

recording piece. In the latter case, none of the methods man-

ages to recover EMG- and EOG-related artifacts. No signal is

captured for the EMG-related artifact whereas false estimates

are achieved for the EOG-related artifact. However, the es-

timates of the ECG-related artifact become more accurate in

the order of appearance of the methods.

Finally, we analyze the impact of the hyperparameters,

i.e. number of components associated to each source, on the

source-estimation accuracy. Figure 3.3 shows the variations

of the average cross-correlation measure with respect to the

hyperparameters on the training datasets for single EEG chan-

nel NTF. For each source, the average cross-correlation mea-

sures remains quite steady through the different set of hyper-

parameters. Trying other sets of hyperparameters around the

best learned set with different number of components for each

type of artifact does not change the performance.

4. CONCLUSION

In this study, we have focused on the improvement of artifact

rejection in single EEG channel recordings by incorporating

Fig. 2. Signal decomposition on two pieces of a single EEG

channel recordings located in the temporal brain area for each

separation source method. In order of appearance, the blue

signal is the original signal, the red signal is the denoised sig-

nal and the last three signals respectively include the EMG,

ECG and EOG signal in black dotted line and the estimated

artifact signal in red solid line.

artifactual prior knowledge. In this context, we have shown

that it is more efficient to jointly model the observed EEG

and auxiliary artifact signals than to only use the latter for the

initialization of the separation procedure, as was done in pre-

vious work. The proposed technique NTF based on a joint

Gaussian modeling of EEG and artifactual signals best ad-

dresses the problem of multiple EEG artifact removal reach-

ing a high quality of source estimates. Compared to ICA,



Fig. 3. Average cross-correlation measures for a range of

hyperparemeters obtained with single EEG channel NTF on

temporal training datasets for each source. The hyperparam-

eters are noted as a couple

the NTF approach has the attractive feature of allowing the

use of different types of physical auxiliary signals giving a

great flexibility in the kind of prior knowledge to be intro-

duced in the spectral domain. From this point of view, our

experimental results on simulated datasets can be seen as a

proof of concept.Therefore, future work will consider other

kinds of physical auxiliary recordings such as head and body

motion through 3D positions and acceleration measures.
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