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ABSTRACT

In this paper, we present the Hidden Discrete Tempo Model, an ef-

fective Dynamic Bayesian Network for audio to score matching. Its

main feature is an explicit modeling of tempo, which directly in-

fluences the timing model of the musical performance. Thanks to

a discretization of the tempo set, it allows for an efficient decoding

by the Viterbi algorithm, and facilitates the introduction of features

which directly depend on the local tempo. We take advantage of

this property by using the cyclic tempogram descriptor in addition

to chroma vectors and onset detection features. Experiment run on

both classical piano and pop music show the very high accuracy of

this model for audio to score alignment, as well as the usefulness of

the tempo feature used.

Index Terms— music information retrieval, automatic align-

ment, dynamic Bayesian networks, acoustic features

1. INTRODUCTION

Audio-to-score alignment, which is the task of matching a musical

performance with the corresponding score, can lead to several kinds

of applications. In a real-time context, it can be used for the tracking

of a live performance (see for example [1]), which then allows for

interactions between the musicians and a computer.

Other applications, which do not require the real-time constraint

can also be found in the field of Music Information Retrieval (MIR).

Indeed, a music-to-score synchronization provides a precise and

meaningful indexing of the audio content, with high-level musical

information. Consequently, it allows for an intuitive browsing in a

musical piece, musicological analyses such as chord transcription

or even score-informed source separation. The presence of a large

number of freely available scores on the Internet makes the use of

music-to-score alignment for these indexing applications possible.

In the recent literature, many real-time score following systems

have employed probabilistic models which belong to the Dynamic

Bayesian Network (DBN) class [2]. In such systems, hidden random

variables represent the current position in the score, in order to take

into account the uncertainty of the matching. The most widely used

of these models is probably the Hidden Markov Model (HMM) (for

example [3]).

However, the Markovian property of HMMs can be a weakness

for the modeling of the note durations. Indeed, in an HMM, the note

lengths are supposed to be independent, and their prior distributions

that can be introduced are “absolute” (in seconds). This model does

not always correspond to the reality of western music since the tim-

ing of most musical pieces is given relatively to a tempo process (in

beats), which can be both unknown and variable.

For this reason, more elaborate models for audio-to-score

matching [4, 5, 1] introduce another random process representing

the tempo. In such systems the note duration probabilities are then

dependent on the current tempo value. In [4], the duration model

is quite rudimentary, since the tempo variable can only take three

values (‘fast’, ‘medium’ and ‘slow’). As a result, the tempo process

does not strongly constrain the note duration. In [5] and [1], the

tempo is modeled by a continuous variable. This potentially allows

for a flexible modeling of the tempo. However, the introduction of

this continuous variable prohibits the use of dynamic programming

methods for exact decoding of the probabilistic model. Cont [1]

uses an adaptive framework which updates a tempo estimate at each

step of the algorithm. Raphael [5] takes advantage of the specific

transition probabilities of his model to calculate the current tempo

probability corresponding to each partial path in the score.

In this work, we introduce the Hidden Discrete Tempo Model

(HDTM), which exploits a discretization of the tempo set. This has

two main advantages compared to a continuous model. First, it al-

lows for a practical inference of all the model variables thanks to

dynamic programming techniques. This model also allows for the

use of acoustic features characterizing the local tempo, in addition to

the pitch and onset descriptors. We show that, thanks to this model,

the exploitation of the cyclic tempogram features [6] improves the

alignment precision on a large database of both popular and classi-

cal music.

The rest of this paper is organized as follows: the Hidden Dis-

crete Tempo Model is introduced in Section 2. We then detail in

Section 3 the observation models. Experiments on the alignment

precision obtained with this model and the influence of the latter fea-

ture are presented in Section 4 before suggesting some conclusions

in Section 5.

2. THE HIDDEN DISCRETE TEMPOMODEL (HDTM)

2.1. Timing Model

A polyphonic musical score can be segmented into chords, defined

as sets of notes that sound at the same time. Every time a note ap-

pears or disappears, a new chord is created. This segmentation pro-

vides a “linear” representation of the score as a sequence of chords,

as displayed in Figure 1. Given this representation, aligning an audio

recording to the score boils down to finding the time indexes of the

chord onsets, or equivalently the length of these chords.

Let c be a chord index and let T c be a random variable repre-

senting the current tempo (expressed in seconds per beat). The “the-

oretical” length (if performed perfectly in time), in seconds, of the

given chord is λcT c, where λc is the duration, in beats, indicated by

the score. However, in order to account for the discretization of the

tempo set and for the performance imprecision (due to interpretation

choices or possible human errors), a deviation is allowed. More for-

mally, let Lc denote the random variable representing the length of
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Fig. 1. Score Representations. Top: The original graphical score.

Middle: “Homophonic” version of the same score. Bottom: Chord

indexes.

chord c (in seconds). We set a gaussian-like probability distribution:

P (Lk|T k) =
1

Z1
exp



−
(Lk − λkT k)2

2(λkT k)2σ2
l

ff

(1)

where σ2
l is a parameter which controls the tolerance to the timing

deviations and Z is a normalizing factor. As in [7], we expect the

possible deviation to increase with the note duration. That is why

the variance is proportional to the theoretical length.

As implicitly used in equation (1), we suppose that the tempo

is constant over a chord’s duration and only changes at chord tran-

sitions. In Raphael’s model [5], the tempo values are modeled by a

Gaussian random walk process. Instead of that, we assume that the

tempo changes are relative rather than absolute and that for example,

the probability is the same for doubling the tempo and for halving it.

Thus, similarly to [8] the transition probabilities are Gaussian with

respect to the logarithm tempo values:

P (T k+1|T k) =
1

Z2
exp

(

−
1

2σ2
t

„

log
T k+1

T k

«2
)

(2)

where σt controls the tempo variation tolerance and Z2 is a normal-

izing factor. In practice, we consider that in the case of strong, abrupt

tempo changes, any tempo can be reached with the same probability.

Hence, we limit the tempo ratio in equation (2) to 2.

2.2. Dynamic Bayesian Network Representation

For a practical representation of the HDTM, we use the Dynamic

Bayesian Network (DBN) formalism [2]. We suppose that the

recording is divided into a discrete sequence of short-time frames.

Let N be the number of frames. For each time frame n, let Cn and

Tn be random variables representing respectively the current chord

and the current tempo. Note that, if Cn = c, we have Tn = T c. For

notation simplicity, this will be denoted by T Cn . We also use an oc-

cupancy variable Dn whose value is equal to the number of frames

since the beginning of the current chord. Hence, we have Dn = 1
iff the frame n corresponds to a chord onset. The relations between

the variables are:

Dn+1 =



1 if LCn = Dn

1 + Dn otherwise,

Cn+1 =



1 + Cn if Dn+1 = 1
Cn otherwise,

Tn+1 =



T C
n+1 if Dn+1 = 1

Tn otherwise,

where LCn denotes the length of chord Cn. The corresponding

probabilities are calculated thanks to equations (1) and (2).

In order to characterize the variations that can occur inside a

chord, in particular between the attack and sustain phases, we also

introduce a Bernoulli attack indicator variable An. The event An =
1 indicates an attack phase. We assume that the first frame of an

“attacking chord” (whose beginning corresponds to a newly entering

note) is always in an attack phase. The second frame can be either

in an attack or in a sustain phase. Since a note attack is supposed

to be short, we assume that all the following frames of the chord

correspond to the sustain phase. Thus, the probability to be in the

attack phase is:

P (An = 1|Cn, Dn) =

8

<

:

1 if Cn attacking and Dn = 1
1
2

if Cn attacking and Dn = 2
0 otherwise.

3. OBSERVATIONMODELING

Similarly to [9], we use chroma features to characterize the pitch

content, and an onset feature derived from the spectral flux to detect

the note attacks. These features are denoted respectively by Vn and

Fn. However the HDTM allows for the consideration of yet another

kind of information, regarding the current tempo. Hence we intro-

duce the use of the cyclic tempogram feature, denoted by Gn in an

alignment system. The complete dependency structure of the model

is represented in Figure 2.

We suppose that these observations only depend on their “cor-

responding” hidden variables, so that the conditional probability of

the observations given the hidden variables is:

P (Vn, Fn, Gn|Cn, An, Tn) = P (Vn|Cn)P (Fn|An)P (Gn|Tn)

Dn−1 Dn Dt+1

TnTn−1 Tn+1

GnGn−1 Gn+1

Cn−1 Cn Cn+1

Vn−1 Vn+1

Fn+1FnFn−1

An+1AnAn−1

. . .

. . .

. . .

Vn

Fig. 2. Graphical model representation of the presented models.

Simple and double contour lines indicate respectively hidden and

observed variables.



3.1. Chroma Vectors

Chroma vectors provide a compact, yet efficient representation of the

harmonic content of a musical signal for audio-to-score alignment

[10]. We use here Zhu’s chroma features [11], with a time resolution

of 50 Hz. For each chord label c, a chroma vector template uc is

built, in the same way as in [10]. This template can be considered as

a “theoretical chroma synthesis” of the chord. The chroma model is

then given by

P (Vn = v|Cn = c) =
1

Z3
e

αD(v̄‖ūc)
,

where D(·‖·) denotes the Kullback-Leibler divergence and the oper-
ator ·̄ represents a normalization so that a vector can be considered as

a probability distribution (the components sum to 1). α is a positive

parameter and Z3 is a normalization factor.

3.2. Onset Feature

The onset feature used is a straightforward onset detector function

based on spectral flux [12]. It is obtained by subtracting a local

threshold (calculated with a 67% rank filter of length 200-ms) to the

spectral flux values. A logistic model is used in order to calculate

the probability of an onset:

P (An = 1|Fn) =
eβFn

1 + eβFn

where β is a positive parameter controlling the “confidence” on the

onset detector. The probability P (Fn|An) can then be calculated by
Bayes’ rule.

3.3. Cyclic Tempogram

The cyclic tempogram feature has been introduced in [6] for a musi-

cal structure analysis application. It provides a mid-level represen-

tation of the tempo which allows for a robust tempo analysis, since

it takes into account not only the time-lags corresponding to a beat

length, but also the ones corresponding to half or twice this beat

length.

In order to calculate this feature, we first compute the local (nor-

malized) autocorrelation of the spectral flux feature over sliding 5-s

windows, for time-lags between τmin = 200 ms and τmax = 3.2 s.

Let hn(τ ) be the value of this autocorrelation function computed

over a window centered on frame n.

Similarly to a chromagram, the time lags are separated into oc-

tave equivalence classes: two time-lags τ1 and τ2 are octave equiva-

lent iff there is a k ∈ Z s.t. τ1 = 2kτ2. The value gn(τ ) of the cyclic
tempogram for a time-lag τ is calculated by adding all the values of

this autocorrelation function corresponding to the same equivalence

class:

gn(τ ) =
X

k∈Z

hn(2k
τ ).

In practice, the autocorrelation function is “blurred” by a Gaussian

filter in order to account for imprecisions induced by the discretiza-

tion of the time lag set.

The observation model is then given by

P (Tn = t|Gn = gn) =
1

Z4
e

γgn(t)
,

where γ is a positive parameter and Z4 is a normalization factor. The

probabilities P (Gn|Tn) are then calculated by Bayes’ rule.

4. EXPERIMENTS

4.1. Database and Settings

For our experiments, we use two databases. The first one contains

59 classical piano pieces (about 4h15), from the MAPS database

[13]. These recordings are the rendition of MIDI files played by a

Disklavier piano. The second corpus is composed of 90 pop songs

(about 6h) from the RWC database [14]. A ground-truth is provided

as aligned MIDI files. The target scores are built from the same

files. However, we do not consider the tempo values of the MIDI

files, in order to simulate the use of graphical scores (sheet music).

Moreover, we discarded the possible percussion parts, because of the

variable quality of their transcription.

A learning database has been built using one hour from each of

these sets. The parameters of the models are set thanks to a coarse

grid search on this learning database. The evaluation is then run on

the rest of both MAPS and RWC datasets.

The chosen evaluation measure is the onset recognition rate, de-

fined as the fraction of onsets which are correctly detected less than

a tolerance threshold θ away from the real onset time of each note

of the score. The value θ = 300 ms is based on the MIREX con-

test1. For a more precise alignment evaluation, we use two other

thresholds: 100-ms and 50-ms.

The alignment with the HDTM is performed by estimating the

Maximum a Posteriori (MAP) path in the model, defined as

argmax P (CN
1 , A

N
1 ,D

N
1 , T

N
1

˛

˛ V
N
1 , F

N
1 ,G

N
1 ),

where C
N
1 = C1, . . . , C

N . The MAP sequence is computed thanks

to the Viterbi algorithm, along with the pruning strategy exposed in

[9]. The used set of possible tempo values is, in beats per minute:

T = {28, 30, 34, 40, 48, 56, 64, 72, 80, 88, 96, 104,

112, 120, 132, 146, 160, 176, 192, 208, 224, 240}

The values of the model parameters, estimated on the learning

database, are displayed in Table 1.

Parameter α β γ σ2
t σ2

l

Value 10 10 1 1
20

1
200

Table 1. Estimated model parameter values.

4.2. Alignment Results

In these experiments, we test two different systems in order to assess

the usefulness of exploiting a feature characterizing the tempo. The

first system uses the model described before, whereas the other does

not exploit the cyclic tempogram descriptor (the parameter γ is set

to 0). The obtained recognition rates are summed up in Table 2.

The alignment obtained by the HDTM are very precise. Indeed,

more than 99% of the chords are recognized less than 300-ms away

from the ground truth, on both databases. As a comparison, the

recognition rate of the (rudimentary) HMM system used in [9] is

about 86%.

The performance is also very high at a finer precision level since

on the MAPS corpus, the recognition rates are higher than 91% for

a 50-ms threshold. Lower scores are obtained on the RWC dataset,

1Music Information Retrieval Evaluation eXchange 2010, score follow-
ing task: http://www.music-ir.org/mirex/wiki/2010:Real-time_

Audio_to_Score_Alignment_(a.k.a_Score_Following)



MAPS Corpus RWC Corpus

Model γ = 0 γ = 1 γ = 0 γ = 1

300-ms 99.34% 99.40% 99.00% 99.22%

100-ms 97.91% 98.03% 94.21% 94.56%

50-ms 91.08% 91.25% 75.18% 75.50%

Table 2. Recognition Rates of the Hidden Discrete Tempo Model,

with the use of the tempo feature (γ = 1) and without (γ = 0). As a
comparison, a HMM system obtains about 86%.
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Fig. 3. Alignments obtained on an example piece. Up: tempo like-

lihoods. Down: chord likelihoods and alignment paths. White indi-

cates high values.

which can be explained by the higher complexity of the music con-

tent in terms of number of instruments, but also by some annotation

errors.

The benefit of using the tempo feature is not always marked. In-

deed the improvement is not statistically significant on the MAPS

database. However, the recognition rate increases obtained on the

RWC corpus are larger than the radii of the 95% confidence inter-

vals (which are respectively equal to 0.07%, 0.15% and 0.28% for

the three thresholds). This can be explained by the steadier tempi

and the percussive contents (mainly drums), which consitute strong

indications about the tempi, in this corpus.

Figure 3 displays the example of the end of a particular pop song

where the benefit of the tempo feature can be seen. On this extract,

the likelihood of the ground truth path is relatively low, because of a

discrepancy between the chroma model and the observation (visible

near 271 s). Thus, the system which does not consider the cyclic

tempogram features drifts to a slower tempo path, whose chroma

templates better fit the observations. However, in this part, the tempo

feature strongly favors the ground truth tempo (and its octaves). This

forces the alternative system to follow a steady tempo, and the re-

sulting alignment is more accurate. Even though this situation is not

frequent (it only happens one three songs out of 75), the tempo fea-

ture does not harm the performance in the other pieces. Thus we

consider it to be worthwhile.

5. CONCLUSION

In this paper, we present the Hidden Discrete Tempo Model, a

tempo-dependent model for audio to score matching. Its main fea-

ture is a hidden tempo variable, allowing for an explicit modeling

of the timing of the musical performance. The representation as a

Dynamic Bayesian Network with discrete hidden variables makes an

efficient decoding possible through the Viterbi algorithm, and allows

for the consideration of features characterizing the local tempo.

Experiments run on both classical piano and pop music show

the very high accuracy of this model for audio to score alignment,

as well as the usefulness of the cyclic tempogram as a tempo fea-

ture. The tempo precision can be adjusted by changing the char-

acteristics of the discretization grid, which can be non-linear. It is

also worth mentioning that, although we performed off-line align-

ment, this model could straighforwardly be applied to a real-time

context. Indeed, the complexity of this model can be reduced by

pruning methods such as beam search.
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