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A Multimodal Approach to Speaker
Diarization on TV Talk-Shows

Félicien Vallet, Slim Essid, and Jean Carrive

Abstract—In this article, we propose solutions to the problem
of speaker diarization of TV talk-shows, a problem for which
adapted multimodal approaches, relying on other streams of
data than only audio, remain largely under exploited. Hence we
propose an original system that leverages prior knowledge on the
structure of this type of content, especially the visual informa-
tion relating to the active speakers, for an improved diarization
performance. The architecture of this system can be decomposed
into two main stages. First a reliable training set is created, in an
unsupervised fashion, for each participant of the TV program
being processed. This data is assembled by the association of visual
and audio descriptors carefully selected in a clustering cascade.
Then, Support Vector Machines are used for the classification of
the speech data (of a given TV program). The performance of this
new architecture is assessed on two French talk-show collections:
Le Grand Échiquier and On n’a pas tout dit. The results show
that our new system outperforms state-of-the-art methods, thus
evidencing the effectiveness of kernel-based methods, as well as
visual cues, in multimodal approaches to speaker diarization of
challenging contents such as TV talk-shows.

Index Terms—Fusion, joint audiovisual processing, multi-
modality, speaker diarization, SVM classification, talk-show,
unsupervised learning.

I. INTRODUCTION

S PEAKER diarization is the process of partitioning an input
audio stream into homogeneous segments according to the

speakers’ identities. As such, it is the task of determining “who
spoke when?” in an audio or video recording that contains an
unknown amount of speech as well as an unknown number of
speakers. Several studies, such as [1], [2] or [3] highlight the
importance of speaker diarization in the field of TV content
analysis. Indeed, this capability is critical for the structuring of
video content. The information conveyed by speakers can allow
the retrieval of elementary structural components that are part of
the organizational scheme of a particular program. For instance,
one such a component is the speech repartition of the various
speakers that further allows role recognition as performed in [4]
and [5] on audio only data.
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On this type of content, the speakers cannot be treated as
registered, in the sense that it is quite difficult to assume that
training databases are available for every possible speaker on a
TV set. Hence, the speaker recognitionmethods such as speaker
verification or speaker identification turn out to be inapplicable.
The focus is thus put here on unsupervised approaches generally
categorized as speaker diarization methods. Extensive reviews
of the research in speaker diarization are proposed in [6] and
[7], although the focus is put on the treatment of meetings and
broadcast news data.
In contrast with the field of biometrics research, where mul-

timodal datasets have been available since more than a decade
(see [8]–[11]), only lately were large enough audiovisual
datasets created, that featured real-life situations and allowed
for a proper evaluation of tasks such as audiovisual speaker
diarization. For instance, the freely available AMI Meeting
corpus [12] proposes 100 hours of meeting with several audio
and camera recordings (with various microphones and shot
angles). Similarly, Canal9 [13] is a database of more than 43
hours of political debates.
Following the creation of the two former datasets, a number

of studies have been led on “real-life” audiovisual data. Thus,
in [14] the author proposes to detect similar audiovisual
scenes—i.e., same speaker, same geographical disposition,
same point of view, etc.—and to gather them in order to create
a reduced view of the program. In [15] and [16], the authors
highlight the importance of computing more robust descriptors
than the lips movement traditionally used in biometrics works.
Having shown that a speaker’s movements are heavily corre-
lated with the audio stream, they estimate the speakers’ head
and body motion to identify which one of the visible persons is
the active speaker. Similarly, entropy of the labial activity for
on-screen persons have also been measured to index talk-show
participants (see [2] and [17]).
Nevertheless, it is only with the works of Friedland et al. (see

[18] and [19]) that the first audiovisual speaker diarization sys-
tems were proposed. Both exploiting the AMI Meeting corpus,
the first of these studies employs multi-camera recordings while
only one camera is used in the second. The speaker diariza-
tion algorithm proposed is similar to the one presented in [20]
(bottom-up) but with two GMM models for each cluster (one
for each modality).
Thus, it is only very recently that audiovisual diarization has

been proposed for edited content. In this case, while many cam-
eras are used during the shooting, in general the images of a
single one are shown at a time, corresponding to the current
shot chosen by the TV director (except for dissolves, surimpres-
sions, etc.). In our work we focus on a particular type of edited
TV content, namely talk-shows. This is a type of TV shows that
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is characterized by a rich and varied content centered at spon-
taneous and lively conversations between the show participants
[1], which makes it particularly challenging for speaker diariza-
tion systems. This is further developed in Section II where we
show the limitation of state-of-the art approaches when applied
to talk-shows.
On the basis of this observation, we propose a completely

novel multimodal speaker diarization architecture, well-adapted
to talk-shows (and edited video content in general). This original
architecture leverages our prior knowledge on the structure of
the type of content considered [1], especially the visual informa-
tion relating to the active speakers, with kernel-based methods,
for an improved diarization performance.
Two systems (of increasing complexity and performance) are

actually presented. The first, decribed in Section III, uses the
visual modality only to perform a pre-clustering of the visual
frames in order to assemble speaker training data to be used for
learning audio classifiers. The second is an improvement of the
first that exploits audiovisual classifiers and an original fusion
scheme, described in Section IV.

II. PECULIARITIES OF SPEAKER DIARIZATION
ON TV TALK-SHOWS

As introduced above, we deal in this study with a particular
type of content, that is TV talk-shows. In this case, in con-
trast to databases used in most of the speaker diarization works,
the audio stream is not the only source of information avail-
able. Moreover, the video content is in this case edited, i.e.,
the shot shown on-screen is chosen by the TV director (typi-
cally through a video switcher) who generally tries to follow the
speaker. The lively nature of TV data makes the task of speaker
diarization quite challenging, especially owing to the potentially
noisy sound conditions and the spontaneity of the speech. In-
deed, talk-shows are known for being structured around the ap-
pearance of natural conversation between the host(s) and his/
her/their guest(s), and are thus far less predictable than other
TV contents such as broadcast news for instance.

A. Corpus Presentation

The main database used in this work is a collection of French
programs: Le Grand Échiquier (GE). This talk-show, whose
duration is between 2 and 3.5 hours, has been broadcasted
live each month between 1972 and 1986 and was presented by
Jacques Chancel. The program is centered around a main guest
and shows a succession of musical performance, TV excerpts,
interviews, etc. According to this guest and his/her personnal
interests, great variations can be observed from one show to the
other. For instance, an important amount of musical passages
are generally proposed when the main invitee is a musician
and/or a singer, while more film excerpts are shown for a movie
director. Six shows have been annotated in speech turns using
the software Transcriber.1 For our experiments, the dataset has
been split into a development set (over which system parameter
tuning is performed) and a test set. The development set is
composed by the first three shows (representing a total time of

1Transcriber—http://trans.sourceforge.net/

Fig. 1. Excerpts from the talk-show datasets Le Grand Échiquier and On n’a
pas tout dit.

Fig. 2. Position of the desktop (red) and lapel (green) microphones on the TV
set of one of the show of the dataset Le Grand Échiquier..

8 hours 34 minutes) while the last three account for the test set
(representing a total time of 8 hours 5 minutes).
In view of a further validation of our system a second dataset

has been considered and used as a complementary test set. This
is the corpus On n’a pas tout dit that consists of four shows
annotated in speaker turns by Bendris [21]. On n’a pas tout dit
is a one-hour long program, daily broadcasted between 2007
and 2008, and presented by Laurent Ruquier (see Fig. 1).
Contrary to Le Grand Échiquier, this show is almost exclu-

sively made up of talk. However, instead of being centered on
the life and achievements of a guest, it is constituted by hu-
moristic chronicles and the majority of the persons present on
the TV set are the hosts and commentators. One of the four
shows has been singled out as a development set (55 minutes)
while the remaining of the corpus is the actual test set (2 hours
45 minutes).

B. Technical Challenges: Talk-Shows versus Meetings

As mentioned earlier, reference speaker diarization works
have been mostly concerned with meeting-conference record-
ings. Hence we here briefly compare this type of content to the
talk-show content in order to highlight the technical challenges
relating to the latter.
Meetings are generally recorded using distant wall-mounted

or desktop microphones, while in TV talk-shows, the micro-
phones generally used are high-quality boom and/or lapel mi-
crophones as shown in Fig. 2. However, audio conditions are
potentially very noisy due to the presence of an audience and
numerous overlapping-speech passages. Moreover, one of the
main features of the talk-show genre is the high spontaneity of
the speech between the participants.
Furthermore, while TV talk-shows and meeting conference

data present common characteristics, the presence of musical
passages, video excerpts imported from other audiovisual pro-
ductions, applause, laughter, etc. is specific to talk-shows. Be-
sides, silence segments generally observed at the speech turns
are extremely short if not negligible. That can be explained by
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TABLE I
A COMPARISON OF THE NIST RT’09 AND LE GRAND ÉCHIQUIER (GE) DATASET
CHARACTERISTICS. DURATIONS ARE GIVEN IN MINUTES/SECONDS AND

PERCENTAGES REFLECT THE FRACTION OF EACH DURATION OVER THE TOTAL
SPEECH DURATION, EXCEPT FOR THE FIRST TWO WHERE THE FRACTION IS

COMPUTED WITH RESPECT TO THE TOTAL SHOW DURATION

the fact that TV talk-shows exhibit a more lively speech (al-
most scripted) due to the fact that TV show guests are pre-
pared in advance by the host [1]. Table I (initially presented in
[22]) proposes amore quantitative comparison betweenmeeting
data (NIST RT’09 [23]) and the talk-show corpus Le Grand
Échiquier that is used in this study.
The GE corpus appears to be a challenging speaker diariza-

tion dataset, especially as far as the number of possible speakers
and the repartition of the speech load are concerned. Indeed, the
average number of speakers jumps from 5 for the NIST RT’09
meeting database to 16 for Le Grand Échiquier. The speaking
time is also much larger, which can be a matter of importance
since some state-of-the-art systems are not designed to deal with
the computational burden that it can represent. Finally, the fact
that the talk repartition is much better balanced in meetings than
in talk-show programs (for which the least active speakers talk
only a few seconds) is noteworthy.
The detection of speech data (i.e., when the talk show partic-

ipants are speaking) has been treated quite extensively (see for
instance [24]) and is not the main focus in this study. Thus, this
detection is here performed semi-automatically by selecting,
from the ground-truth annotations, speech parts of more than
30 seconds that are surrounded by music or applause lasting no
less than 10 seconds. The speech sections obtained are therefore
subject to contain laughter, silence, etc. on top of pure speech.
The evaluation presented hereafter is therefore carried out on
this set of noisy audio data, ensuring the generalization of the
proposed approach since results obtained with fully automatic
speech detection are expected to be at least as good.

C. Adapted Evaluation Methods

For speaker diarization campaigns, such as NIST RT [23],
standard evaluation methods have been proposed in order
for the participants to compare the performances of their
systems. The usual evaluation metric is the diarization error
rate (DER2) which is the sum of 3 or 4 errors: , the
percentage of scored time that a speaker ID is assigned to the
wrong speaker, , the percentage of scored time
that a hypothesized speaker is labeled as a non-speech in the
reference, , the percentage of scored time that a
hypothesized non-speech segment corresponds to a reference
speaker segment and, if specified, , the percentage of

2NIST RT tools—http://www.itl.nist.gov/iad/mig/tools/index.html

scored time that some of the multiple speakers in a segment do
not get assigned to any speaker. A mapping function between
the result of the automatic and the reference clustering is used
so as to minimize .

(1)

However, as it is explicated in [25], the DER cannot be ex-
pected to fully reflect the systems’ capacities. Following this
idea, it can be observed that the DER is sensitive to the speech
repartition. Now, for talk-show programs it can be noticed (as in
Table I) that speakers present on a given TV set do not carry the
same load of speech. The correct identification of only the most
prominent speakers, namely the host(s) and the main guest(s)
can ensure lowDER values even if themajority of the remaining
speakers is incorrectly spotted. Hence, the standard DER poorly
describes the diarization systems ability to correctly cluster the
non-dominant speakers, which are as important as the main ones
in a number of applications, especially when the ultimate goal
behind the use of speaker diarization is to obtain a structure of
the talk-show (based on speakers interventions as proposed in
[1]).
Therefore, we propose two new error rates (the first one has

been introduced in [26]). These measures, called unipond and
semipond, compute weighted error rates. As it can be seen in the
definitions (2) and (3), unipond and semipondweight the speech
amount of each person so that it is more sensitive to its correct
identification than to his/her speech load. These new error rates
are again constructed as the sum of , and

as in the standard DER, however in this case the
overlap errors are not taken into account. In both cases, the map-
ping function used in is the same as in the standard
DER. So, with the total time of the speech produced
by the speaker , the total time of speech wrongly at-
tributed for this same speaker, the total number of speakers
and the number of major speakers (to distinguish from the
minor speakers that talk way less) we have:

(2)

(3)

The unipond metric equally weights every talk-show par-
ticipants, meaning that, independently of their speech load,
speakers contribute to an equal portion of the error rate. The
semipond metric proceeds similarly but distinguishes primary
and secondary speakers. Primary speakers include persons
speaking the most during the TV show such as the main host(s)
and guest(s) and secondary speakers the remaining participants.
The error rate is then split in two equal parts between primary
and secondary speakers. In the case of the program Le Grand
Échiquier, , the number of primary speakers is set to 2: the
host Jacques Chancel and the main guest.
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TABLE II
NIST DER (IN PERCENTAGE) FOR THE NIST RT’09 AND
LE GRAND ÉCHIQUIER (GE) DATASETS WITH AND WITHOUT

SCORING ON THE OVERLAPPING-SPEECH PASSAGES

TABLE III
UNIPOND AND SEMIPOND DER (IN PERCENTAGE) FOR THE NIST RT’09

AND LE GRAND ÉCHIQUIER (GE) DATASETS

D. Evaluation of a State-of-the-Art System

The system proposed in [27] is used in order to situate the
results obtained by a state-of-the-art approach for the task of
speaker diarization on talk-show content (as previously done in
[22]). The latter has been chosen on account of the very good
results that it achieved for the NIST RT’09 evaluation campaign
for the SDM task (Single Distant Microphone).
Table II displays the results obtained for the NIST RT’09

corpus and the GE corpus (Le Grand Échiquier) with the stan-
dard DER. For the NIST RT results, the data of the previous
campaigns (RT’04, 05, 06 and 07) have been used as a devel-
opment set so that RT’09 shows could be used entirely in the
test set. For the GE dataset the results are given over both the
development and test sets.
Table III gives the results obtained on the corpus Le Grand

Échiquier with the newly introduced metrics unipond and
semipond. As it can be seen in Table II, the results obtained on
this database are much worse than those obtained on the NIST
one. Moreover Table III emphasizes this trend, showing that on
average only one third of the speakers present on a TV set are
correctly recognized.

III. A NEW MULTIMODAL SYSTEM

As briefly exposed in Section I, a number of solutions have
been proposed for the speaker diarization of TV content. In
our previous work [22], we have shown that robust visual fea-
tures may prove very useful for the initialization of a top-down
speaker diarization system. Indeed, the results obtained have
shown an improvement of the overall diarization performance in
comparison with the original state-of-the-art system. However,
the joint use of audio and visual features during the clustering/
classification phase have turned out to be inefficient (that is
hardly better than an audio-only system) with this GMM-HMM
architecture, despite our extensive efforts.
Now the new architecture founded on the use of Support

Vector Machines (SVM) we proposed in [26] has proven effec-
tive at fusing audio and visual features for an improved speaker
classification. However, this system was labeled as a semi-au-
tomatic system, since it relied on the fact that a user would pro-
vide very short training examples (typically between 5 and 15
seconds for each participant that appears in the TV show) to be
used to learn SVM classifiers to discriminate the speakers. Thus

Fig. 3. Description of the speaker diarization system proposed.

inspired by this previous work, the new architecture presented
hereafter employs the same type of classifiers, yet this time the
training examples are collected in an unsupervised fashion (in-
stead of being provided by a user), and an improved fusion
strategy is adopted.
As shown in Fig. 3, the proposed system can be divided in

three distinct steps: the extraction of audio and video features,
the collection of training data to create a model for each speaker
and finally the classification of all speech parts of the talk-show
being processed.

A. Feature Extraction

As audio descriptors, we use, as it is usually done, Mel-Fre-
quency Cepstral Coefficients (MFCC, see [28]) along with their
first and second derivatives. We also add Line Spectral Frequen-
cies (LSF, see [29]). The extraction is performed at a rate of 100
Hertz using the YAAFE3 software.
As for the visual descriptors, we consider features character-

izing the clothing of the TV show-participants, building upon
the method initially proposed in [30]. Indeed, though the field
size of the shots are varying (from long shots to close-ups), most
of the time the person talking is seen on-screen. However, the
use of a facial recognition system as in [31] is rather difficult in
our task due to the camera movements, the changing field-size
and angles of shot, the changing postures of the filmed persons
and the varying lighting conditions.
The approach that we choose has the advantage that features

relating to on-screen persons’ clothing can be extracted even
more robustly than the persons’ facial features. Another moti-
vation is the fact that in the TV production domain, the clothing
of the participants on a TV set is often carefully chosen in order
for the viewer not to confuse them. This is asserted in details in
specialized TV production publications such as [32] and [33].
Thus, our main assumption being that we often “see who we

hear”, we suppose that the information carried by the clothing
can help us for speaker identification. This assumption is rein-
forced by Fig. 4 showing the correlation between the clothing
dominant color of the person on-screen and the speech turns, the
two speakers being those presented just above. The localization
of the chest for the extraction of the clothing information is per-
formed using the method described in [26]. In a nutshell, faces
are first detected using the Viola-Jones algorithm [34], and the

3YAAFE—http://yaafe.sourceforge.net/
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Fig. 4. Clothing dominant color (above) and speech turns (below) for a two-
minute speech segment with two participants.

TABLE IV
AUDIO AND VIDEO FEATURES USED IN THE NEW

SPEAKER DIARIZATION SYSTEM PROPOSED

corresponding chest localization is then derived from heuristic
rules. Then a tracking is realized within each video shot, as done
in [26], using the OpenCV software (see [35]) so that the posi-
tion of the faces and chests can be determined in the case of
non-detection of faces on some frames.
In this work we rely on a more thorough description of the

clothing color by extracting HSV (Hue Saturation Value) his-
tograms computed for each frame, as well as cumulated his-
tograms for each shot. The former are supposed to reflect the
color distribution at each frame while the latter represent a com-
pact description for each shot of the TV show.
Following a preliminary study to tune the histogram extrac-

tion parameters (led on the Canal9 political debate dataset [13]),
they are computed on respectively 16, 4 and 2 bins, with ampli-
tudes varying from 0 to 180 for the Hue component, and 0 to
255 for the Saturation and the Value. The shot detection is per-
formed using Shodetect.4 The video frame rate is 25 Hertz as
it is generally observed for TV productions. Table IV gives an
overview of the extracted descriptors and gives their dimension.

B. Collecting Training Examples

The goal of this stage is to gather, in a non-supervised fashion,
training examples as pure as possible, in order to create the
best training database for the speakers present on the TV set
of the considered talk-show. By “examples as pure as possible”
we refer to the fact that each speaker model to be created has
to be composed by as much data from the same participant as
possible.
1) Shot Selection: The major hypothesis used in this selec-

tion step is again that “you often see who you hear”. Neverthe-
less, it is important to account for the fact that exceptions to the
previous hypothesis are susceptible to arise. Thus, we are inter-
ested in keeping only the shots where this assumption is more

4Shotdetect—http://shotdetect.nonutc.fr/

Fig. 5. Face detection and filtering. The faces in red are kept and those in yellow
discarded. The shot in the middle is discarded since no face big enough can be
found.

likely to be verified—performing what is usually called speaker
detection (see for instance [36] and [37]).
2) Shot Filtering: First of all, only shots that are long enough

and contain faces in the foreground are kept. This can be ex-
plained by the fact that it is much more likely to have an active
speaker shown on-screen during a lengthy shot than during a
short one. Indeed the latter is generally used to show reactions
to the speech currently given (either from the audience or some
listening participant).
Therefore, a subset of shots of the show that are considered

to be “long enough” are selected by retaining those which are
longer than 10 seconds for Le Grand Échiquier against 5 for
On n’a pas tout dit. This length being directly linked with the
average duration of a shot (7.5 against 3 seconds).
Another threshold has also to be set to characterize shots with

too small faces (usually located in the background). This allows
for discarding audience views or long shots that cannot be taken
into account for the creation of reliable speaker models. Fig. 5
offers an illustration of this last principle.
3) Lip Activity Detection: Now our goal is to try to make sure

that, in the selected shots, the on-screen person in the foreground
is effectively the active speaker. Indeed, while we highlighted
earlier that most of the time the speaker is shown on-screen, it is
necessary, to assemble training sets as pure as possible, to dis-
card shots for which the person visible is not the one doing the
talking. Therefore, inspired by [38] a lip activity detector is pro-
posed. However, in our case, owing to the great spontaneity of
the participants (that has to be distinguished from sitcom con-
tent as proposed in [38] where actors are playing a well-defined
role), we need a more robust detector. We proceed as follows: a
face detector [34] and a face tracker [39] are combined so that
a detected face can be followed in a given shot as explained in
[26]. Then, as explained in [38], facial features of the mouth
are detected in the face region using a generative model of the
feature positions combined with a discriminative model of the
feature appearance. The probability distribution over the joint
position of the features is modelled using a mixture of Gaussian
trees, a Gaussian mixture model in which the covariance of each
component is restricted to form a tree structure with each vari-
able dependent on a single parent variable. This model is an
extension of the single tree proposed in [40].
Thus, once the mouth corners are located in shot-frames

where faces could be detected, a grid of points of interest is
placed on a rectangle containing the mouth (with grid points
being placed every two pixels). This rectangle is slightly down
shifted in order to measure the movements of the lower lip
that is the one moving while talking. Optical flow tracking is
then performed using [39] across the whole shot duration. This
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Fig. 6. Setting of the rectangle on the mouth of the detected face and tracking
of the grid points.

Fig. 7. Lip activity detector for two consecutive shots of the talk-show
Le Grand Échiquier.

tracking is performed either forward or backward, depending
on the location, within the shot, of the frames where mouth
corners could be detected.
Fig. 6 shows how the bounding rectangle is set along with

the displacement of the grid points between two consecutive
frames. The grid points for the frame are displayed in green
while the grid points for the current frame are in blue. The
corresponding displacement is visible in red. The lip activity
can then be computed for each video frame as the difference of
the average head motion and the average mouth motion (with
the average taken over all the points of interest of the grid). As
explained in [26], the average head motion can be computed
during the extraction of visual features since a face tracker is
employed.
An illustration of the lip activity detector is provided in Fig. 7.

Two persons appear on-screen consecutively: Jacques Chancel,
the host of the talk-show Le Grand Échiquier and the French
singer Johnny Hallyday. During these two shots (separated by
the vertical red line), Johnny Hallyday starts talking off-screen
and carries on with the camera switching from Jacques Chancel
to him. Then, Jacques Chancel interrupts Johnny Hallyday who
remains silent for the rest of the second shot, while Chancel
is speaking off-screen. The measured lip activity shown in the
bottom-half of Fig. 7 testifies that the proposed method is co-
herent with what is practically observed.
For an easier thresholding, the instantaneous variations of the

lip-activity signal are actually smoothed using a 0.5-second me-
dian filter (with 50% overlap). Due to the absence of visual an-

notations in terms of “talking faces”, the lip activity detector has
not been directly evaluated. However, the validity of this contri-
bution is implicitly verified through the good diarization results
obtained in the following. Indeed, on average, a three to four
point increase (depending on the evaluation metric used) is ob-
served in the final results with the adjunction of the lip activity
detector.
In a nutshell, to sum up the selection process, the shots have

to be long enough and to exhibit a significant lip activity to
be picked up for the automatic creation of speaker models. Of
course, errors are susceptible to happen, for instance, if the
on-screen persons’ lips are moving while the actual speaker
is off-screen. This is precisely the reason for which SVM are
chosen as classifiers. Indeed they show a great ability to cope
with outliers, as it has been observed in [26].
4) Clustering Cascade: Once obtained a selection of shots

with on-screen speakers, the shots corresponding to the same
speakers need to be grouped together. For this, two clusterings
are combined: the first is done on visual features and the second
on audio features. This cascade of monomodal clusterings has
been experimentally found to be more efficient than a single
clustering based on combined audiovisual features. In partic-
ular, a trade-off between performance and complexity is thus
achieved as the first visual clustering is quite simple, while the
subsequent audio clustering is more computationally intensive.
This is further explained in the following.
5) Visual Clustering: Using the cumulated HSV color his-

tograms (computed on the clothing of the on-screen person) for
the selected shots, a first (visual) grouping is performed. This
one is a hierarchical agglomerative clustering. The distance used
to measure the shot similarities is a distance computed on the
cumulated color histograms. It is defined as follows:

(4)

where and are histograms of bins each (see [41]).
The grouping stops when a “satisfying” number of visual

clusters is reached. In order to avoid confusions, that
is avoiding the creation of clusters combining two distinct
speakers, this number is chosen to be quite large (meaning way
above the roughly expected number of speakers in the tested
TV show). We set experimentally this number to 40 in the case
of Le Grand Échiquier and On n’a pas tout dit since never
more than 20 speakers are expected in such programs.
Fig. 8 displays the principle of the hierarchical grouping. The

clustering is stopped when the blue dotted line is reached. As
depicted, since this criterion is met pretty quickly, clusters re-
main rather pure, meaning that the shots collected in a given
cluster usually correspond all to the same person. Besides, due
to the choice of the stopping criterion, several clusters can ac-
tually represent the same speaker (as it is the case for the two at
the left and the two at the right of Fig. 8). This over-clustering
issue is then solved by the addition of an audio clustering as ex-
plained afterwards.
6) Audio Clustering: Given the previously formed 40 visual

clusters , the goal is now to obtain fewer clusters (ideally as
many as the number of target speakers), so that each of them can
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Fig. 8. Dendrogram illustrating the hierarchical agglomerative clustering
based on the cumulated HSV histograms of the selected shots.

TABLE V
PURITY OF THE LEARNING DATABASE AUTOMATICALLY ASSEMBLED,
ON AVERAGE ON THE DEVELOPMENT SET OF THE TALK-SHOW LE
GRAND ÉCHIQUIER. THE LAST COLUMN REPRESENTS THE TOTAL

TIME OF THE SELECTED SHOTS (IN MINUTES, SECONDS)

be considered as an appropriate set of training examples (for a
particular speaker). Recall that the training data thus collected is
to be used to learn classifiers capable of discriminating between
the speakers.
Since it was found that the visual features did not allow

for further grouping the clusters obtained so far without in-
troducing confusions, this final grouping exploits the audio
features (MFCC, , and LSF). It is achieved by applying
agglomerative hierachical clustering to the clusters , yet
using a more sophisticated inter-cluster distance, namely Bhat-
tacharryya distances in a Reproducing Kernel Hilbert Space
(RKHS) [42], which are kernel-based probabilistic distances. In
fact, these distances have been found well-suited for clustering
complex audio data in previous work (see [24], [43], [44]).
Exploratory experiments have shown that much better results
could be obtained than with traditional BIC-related approaches.
Contrary to the initial visual clustering, this time a dynamic

threshold is used to stop the clustering at a correct level and
thus ideally obtain as many clusters as target speakers. This
threshold—defined as the best compromise between the dupli-
cation/merging of speaker models—is learned on the develop-
ment set of each dataset (Le Grand Échiquier and On n’a pas
tout dit).
Table V testifies that this clustering cascade allows us to col-

lect acceptable training sets for the different speakers. Indeed,
the number of clusters diminishes drastically while their average
purity stays almost constant. This purity, sometimes referred to
as the precision, is the ratio of the time attributed to the main
speaker of the cluster over the total duration of the cluster. Of
course, the speaker models created contain outliers. However,
their effect during the classification phase are expected to be
downplayed by the use of support vector machines.

C. SVM Audio Classification of Hypothesized Speakers

The previous phase allows the collection of then reliable
training datasets for speaker classification, as attested by the
results presented in Table V. The goal is now to process the
remaining parts of the show (that were not selected during the
data collection stage and not taken into account in the previous

TABLE VI
DIARIZATION ERROR RATES (IN PERCENTAGE) FOR THE DATASET LE GRAND
ÉCHIQUIER (GE) AND THE THREE AVAILABLE METRICS. NIST DER IS GIVEN
WITH AND WITHOUT SCORING ON THE OVERLAPPING-SPEECH PASSAGES

clustering cascade). Note that these remaining parts represent a
higher fraction of the content, compared to the shots selected
in the previous stage.
As mentioned earlier, we choose to use support vector ma-

chines on account of their ability to perform robust classifi-
cation of the hypothesized speakers. For more information on
SVM, we refer the reader to the many good tutorials on this
powerful tool (see for instance [45]). The classification is per-
formed over the previously extracted audio features (MFCC, ,

and LSF).
Practically, we use one-vs-one SVM classifiers, meaning that

for the hypothesized speakers obtained earlier,
biclass classifiers are trained. Since the training sets are poten-
tially imbalanced we use a different value5 for positive and
negative training examples, which we will refer to as and

respectively, so that the solution is not biased by the over
representation of one class at the expense of another in every
bi-class problem (one speaker against another). and are
respectively set as the ratios of positive and negative examples
over the total number of examples. Also the kernel used in this
work is the usual Gaussian kernel:

(5)

with the dimension of the feature vector and the kernel width
parameter. The latter is set in the development phase through
cross-validation.
We have chosen to use the LIBSVM6 toolbox [46] to build the

various classifiers and obtain probabilized outputs. The obten-
tion of the frame by frame speaker probabilities (for each of the
hypothesized speakers) is then performed using the minpair

coupling as proposed in [47].
Then, a median filtering is applied using a 0.5-second

window, with a 50% overlap. For each of these temporal seg-
ments the speaker label that is elected is the one corresponding
to the hypothesized speaker with maximum probability.

D. Experimental Results

We propose here to evaluate the system previously described
using the three metrics introduced in Section II: NIST DER,
unipond and semipond. Table VI shows the speaker diarization
scores obtained for the corpus Le Grand Échiquier.
It can be observed, when comparing with the results from

Tables II and III of Section II, that the scores are largely im-
proved. For instance, the improvement is as high as 7.8% (in
absolute) with NIST DER or 14% with the unipond metrics on

5 is the regularization factor penalizing outliers in so-called -SVM
schemes.
6LIBSVM—http://www.csie.ntu.edu.tw/~jlin/libsvm/
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TABLE VII
DIARIZATION ERROR RATES (IN PERCENTAGE) FOR THE

DATASET ON N’A PAS TOUT DIT (OAPTD) AND THE THREE
AVAILABLE METRICS. NIST DER IS GIVEN WITH AND WITHOUT

SCORING ON THE OVERLAPPING-SPEECH PASSAGES

the test set. Furthermore, it can be noted that while the results are
almost the same on the development and test sets for the stan-
dard DER, they are much worse for the test set with unipond and
semipond. This can be explained by the number of speakers that
is greater in the test set, compared to the development set (on av-
erage 17.6 against 15). Still, the performance of our system on
the test set is significantly better than the reference system. Be-
sides, one can be surprised by the fact that the NIST DER of the
System I is lower for the test set than the development set while
it is the opposite for unipond and semipond. That implies that
with the weighting introduced in the computation of the new
metrics, the importance of each speaker is altered (more for the
less active speakers and less for the most active).
To avoid any risk of overfitting to the corpus Le Grand

Échiquier, the algorithm presented above has also been tested
on the TV talk-show dataset On n’a pas tout dit (OAPTD). The
system run is exactly the same except that two parameters had
to be adjusted: the minimum duration for the shot selection and
the dynamic threshold for the audio clustering. Their tuning is
performed on one show of the corpus that is used as develop-
ment set while the three remaining ones constitute the test set.
From the results presented in Table VII it can be noticed

that the score discrepancy between the standard DER with
overlapped speech, compared to the one without overlap is
much more important for On n’a pas tout dit than for Le Grand
Échiquier. This can be explained by the speech characteristics
of the former show, which are much quicker and concise and
for which the participants are more prone to speak at the same
time. Otherwise, the results obtained for the three metrics seem
in adequation with those presented in Table VI, as they follow
the same trend.

IV. AUDIOVISUAL CLASSIFIER FUSION

A shortcoming of the system presented so far is that the vi-
sual information is not used during the classification phase. Vi-
sual features are however clearly much more stable than their
audio counterparts (when the speaker is visible on-screen). In-
deed, during a shot, the color distribution is very little subject
to change, while audio descriptors exhibit major fluctuations.
The exploitation of visual features can thus be of great value,
provided that we are able to determine, at every time instant,
whether the current speaker is on-screen or not. Therefore, we
add a visual classifier to the audio one.
In the following, we first describe the visual classifier, then

explain how its output is combined with the audio classi-
fier output, after a confirmation as to whether the speaker is
on-screen has been obtained.

Fig. 9. Principle of the audiovisual coherency indicator.

A. SVM Visual Classification of Hypothesized Speakers

The visual classification is again done using one-vs-one SVM
classifiers with probabilistic outputs. They are built using HSV
color-histograms from the selected on-screen person clothing
region.
The only difference with the SVM audio classification previ-

ously proposed is the kernel chosen. In this case, the histogram
intersection kernel is preferred to the Gaussian kernel (see [48]).
With and two -bin histograms, this kernel is defined
as:

(6)

B. Audiovisual Coherency Indicator

Since the visual features are extracted on the participants’
clothing bounding boxes (which are determined based on face
detection), all frames where faces have not been detected (such
as those inside cutaway shots) do not allow for extracting those
features. Therefore, in this case we can only rely on the results
obtained via the SVM audio classifiers.
For shots where both audio and visual features are available

we however do not know whether the on-screen person is the
one talking. As exposed in Fig. 9 we thus need to create an au-
diovisual coherency indicator, that, by pointing out if the person
talking appears on-screen will allow us to use either the audio or
the video modality. As stated earlier, the video descriptors are
known for being steadier than the audio ones for our task (this
has been confirmed experimentally). Thus, when the speaker is
shown on-screen the visual classifier’s output will be preferred.
Numerous approaches have been proposed to compute the

audiovisual correlation between audio and video signals, for
instance the Canonical Correlation Analysis (CCA, [49]), the
Co-Inertia Analysis (CoIA, [50]) or the Cross Factor Analysis
(CFA, [51]). We here follow a different approach that consists in
learning an audiovisual distribution “profile” for each speaker.
Let and be the SVM output

probabilities for the frame to belong to the speaker given
the audio feature vector or the visual feature vector

. The key idea is that the audiovisual classification out-
puts and , for all , have different
“profiles” when the active speaker is on-screen compared to
when they are off-screen. This “profile” can be learned from
the training dataset that has been assembled after the shot
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selection and the clustering cascade, as will be described in
Section IV-B1. Then, the audiovisual coherency indicator can
verify for a tested frame if the speaker probabilities obtained
via visual classification are coherent with the ones obtained
by audio classification. Two actions are then possible: if the
indicator says the audio and visual classification outputs are
compatible, then the visual label is kept. If not, meaning that
the audio and video information are “uncorrelated” (and the
person on-screen is not the one talking), the visual information
is discarded and the label attributed to the frame is determined
by the audio classifier.
1) Modeling the Joint Distribution of Audiovisual Classi-

fiers Outputs: Our audiovisual coherency detector decides if the
audio and visual classifier outputs are compatible by checking
whether the meta-feature vector

computed on a test frame can be considered as an observation
of the distribution learned on the previously assembled
training set.
Here, we propose to use the one-class SVM technique to learn

this distribution. This is in fact an effective non-parametric den-
sity estimation technique. We refer the reader to [45] for fur-
ther details on one-class SVM, and merely indicate here how
we exploit them. Similarly to the more traditional bi-class SVM
setting, in one-class SVM a decision function is learned
whose sign indicates whether or not a tested observation be-
longs to the modeled density.
In summary, speaker classification based on coherency detec-

tion is performed as follows:
i) one-class SVMs are learned on the training dataset (as-
sembled after the shot selection and the clustering cas-
cade) for every hypothesized speaker , yielding deci-
sion functions ;

ii) during the testing phase, for a frame , the deci-
sion function relating to the speaker maximizing

is selected and applied to ;
iii) if is positive (i.e., the on-screen person

is the active speaker), then the label is validated
for frame , otherwise the decision (as to who is the
active speaker) is left to the audio classifier by taking

.
2) Comparison With Existing Techniques: In order to val-

idate the one-class SVM approach proposed here for testing
the hypothesis “the person appearing on-screen is speaking”
we make a comparison with state-of-the-art methods, namely
CCA, CoIA and CFA (see [49]–[51]). The correlation between
the output probability vectors and is then com-
puted. If the correlation is positive, then the person on-screen is
the one talking, otherwise it is not the case. The projection bases
are learned on the training dataset created after the shot selec-
tion and the clustering cascade similarly to the one-class SVM
training.
Since unfortunately no groundtruth is available for the event

“the active speaker is on-screen”, the efficiency of the audio-
visual coherency indicator has not been directly evaluated.

Fig. 10. Comparison of various methods measuring the audiovisual correlation
for a few minutes of the talk-show Le Grand Échiquier.

However, note that it is implicitly assessed through its positive
impact on the speaker diarization results as will be shown in
Section IV-C. Fig. 10 proposes a visualization of the correlation/
coherency results achieved by our method compared to CCA,
CoIA and CFA, over a few minutes of video. The visual cuts
are indicated by the black vertical lines while the speaker turns
are in dotted lines. The bottom row gives the groundtruth for the
speech repartition (with the names of the speakers). Just above
a key-frame of each shot is shown. It is therefore possible to
check whether the audio and visual information are correctly
correlated.
Fig. 10 highlights that the method we propose behaves much

better than CCA and CoIA. Indeed, the correlations measures
obtained with the latter exhibit great amplitude variations (gen-
erally correlated with the shot changes) that make the dynamic
thresholding between correlated and uncorrelated parts rather
difficult to tune. CFA seems to work fairly well even if here
again the tuning of a threshold is problematic (which has been
further confirmed on numerous examples during our experi-
ments). In comparison, the new method based on the verifi-
cation of the coherency of the audio and video streams using
one-class SVM allows for a much easier adjustment of the de-
cision threshold.

C. Experimental Results

We now test the impact of the added audiovisual fusion com-
ponents on the performance of our speaker diarization system.
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TABLE VIII
DIARIZATION ERROR RATES (IN PERCENTAGE) FOR THE DATASET LE GRAND
ÉCHIQUIER (GE) AND THE THREE AVAILABLE METRICS. NIST DER IS GIVEN
WITH AND WITHOUT SCORING ON THE OVERLAPPING-SPEECH PASSAGES

Fig. 11. Confusion matrix showing the actual/hypothesized speakers associa-
tion for a program of the dataset Le Grand Échiquier.

The results are presented in Table VIII. It can be observed that
the results are globally better compared to the previous system
(that did not exploit the visual classifiers). However, for the
unipond metric and, to a lesser extent semipond, the improve-
ment is not as high as for the standard NIST DER. Audiovi-
sual fusion modules improve the clustering of the dominant
speakers. However, as expected, since they do not introduce
new clusters, they cannot increase as much the unipond and
semipond metrics.
Fig. 11 shows a confusion matrix for a particular broadcast

program of Le Grand Échiquier. The columns relate to the hy-
pothesized speakers (deduced after the clustering cascade as de-
tailed in the previous sections) while the rows are the target
groundtruth speakers present on the talk-show set. Therefore,
the green blocks indicate the proportion of frames classified as
cluster , with that belong to a given speaker (Jacques
Chancel, Michel Berger, etc.). The sizes of the blocks clearly
indicate that the speech load varies a lot from one person to an-
other. Besides, it allows for the identification of common mis-
takes such as the fact that main speakers tend to “attract” frames
that belong to secondary speakers. Also, it can be generally ob-
served that the host (Jacques Chancel in this example) has a lot
of speech frames that are classified in the cluster corresponding
to the main guest (here cluster 2 for Michel Berger). This phe-
nomenon can be explained by the type of interventions of the

TABLE IX
DIARIZATION ERROR RATES (IN PERCENTAGE) FOR THE

DATASET ON N’A PAS TOUT DIT (OAPTD) AND THE THREE
AVAILABLE METRICS. NIST DER IS GIVEN WITH AND WITHOUT

SCORING ON THE OVERLAPPING-SPEECH PASSAGES

host: very short and concise that correspond to questioning,
often interrupting the guest.
Table IX provides the diarization results of the last system

on the validation dataset On n’a pas tout dit. Again, improve-
ments are observed, particularly for the standard DER. How-
ever, due to the higher frequency of speaker turns, speakers are
more likely to talk at the same time, which explains why the
difference while taking or not the overlapped speech parts into
account is so important.

V. CONCLUSION

In this article we have proposed a new multimodal speaker
diarization system exploiting kernel methods. The focus has
been put on talk-show programs, as such TV content raises
challenging research issues, especially from an indexing and
event-retrieval perspective for which speaker diarization is a
crucial capability.
Once audio and visual features have been extracted, our

system proceeds through two major phases: collecting learning
examples for each speaker (in a non-supervised fashion) and
classifying audiovisual frames based on SVM. The first phase is
accomplished by selecting (long enough) shots of each speaker,
before grouping them together in a cascade of visual and audio
clusterings. Once obtained these clusters constitute training data
for hypothetical speakers, that is used to learn SVM speaker
classifiers. Two schemes are then considered: an audio-only
classification scheme and a parallel audio/visual classification
scheme. In the latter, the classifier output is chosen through
an audiovisual coherency analysis which checks if the person
talking appears on-screen. If this is the case, the speaker label
output by the visual classifier is chosen, otherwise the audio
one is kept. Both classification schemes display appreciable
improvements in comparison with state-of-the-art systems.
Thus, the exploitation of visual cues (when available) has

been shown to be very valuable for the task of speaker diariza-
tion, even though the audio modality is the only one which is
always reliable. This is owing to the fact that the active speaker
is not always seen on-screen.
Also of note is the fact that discriminative methods such as

SVM classifiers prove to be very competitive in a field that
usually employs quasi-exclusively generative methods such as
GMM-HMM.
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