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ABSTRACT

In the process of music content creation, a wide range ot&pi
audio effects such as reverberation, equalization or dimaom-
pression are very commonly used. Despite the fact that stetie
have a clear impact on the audio features, they are raredytaito
account when building an automatic audio classifier. In plaiger,
it is shown that the incorporation of prior knowledge of thgital
media creation chain can clearly improve the robustnedsecditidio
classifiers, which is demonstrated on a task of musicalument
recognition. The proposed system is based on a robust éeseiec-
tion strategy, on a novel use of the virtual support vectochires
technique and a specific equalization used to normalizeigmals
to be classified. The robustness of the proposed system &iexp
mentally evidenced using a rather large and varied sourabédse.
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We treat examplarily a realistic musical instrument clésaiion
scenario, where solo excerpts from real world commerciebne
ings are handled. It is important to note that our aim hereoism
propose a high accuracy instrument recognition system,airkea
contrast to other proposals [5, 6]. Rather, we focus on tpecggh
to prior knowledge integration for robust audio classifimat and
merely apply it to the instrument classification problem

Figure 1 presents an overview of our approach. Our contribu-
tions are related to three classification stages, higtdijtin light
gray color. First, at the feature selection stage, a rolratufe se-
lection strategy, initially presented in a previous workif3re-used
and further assessed. Second, at the classifier trainigg,ste in-
troduce a novel use of the virtual Support Vector Machings@gch
[7]. Third, at the testing stage, a specific equalizationtiiizad to
normalize the signals to be classified.

Index Terms— Audio processing systems, Learning systems,

music processing

1. INTRODUCTION

Efficient audio classification systems should be able totsixeome
robustness to sound deformations due to varying conteaticre
conditions. The latter include varying recording conditipin par-
ticular heterogeneous room acoustics and sound captumeigees,
and/or the application of common audio effects (such asrexpa
sion/compression, equalization, reverberation, etcgdeally, the
classifiers are expected to be invariant under such defammnsain
the sense that their performance should not degrade whengtes
real world sounds which were recorded in different acoustizi-
ronments or processed by different audio effects, comparede
reference training sounds available at the lab.

Thus, the purpose of this work is to make classifying reallevor
audio more efficient under highly varying audio creationogsses,
by incorporating some prior knowledge on these processgg-e
cially the recording and post-production. To the best of lmowl-
edge, our approach is completely novel. There have beerydewer
works on the robustness of some features used for musicadlsig
classification to various deformations, especially “aggiee” ones
which seriously alter the audio content, such as low bitngi& cod-
ing, or noise addition [1, 2, 3]. However, there has been ewipus
concern with the influence of post-production audio effextshe
classifiers behavior, nor any attempts to make use of thid &fn
prior knowledge to improve the classification. Note thas tlisig-
nificantly different from the classification of noisy sigaahs widely
studied in the speech/speaker recognition community [4].

The research work has been supported by the European Coiomiss
under the IST FP6 research network of excellence K-SPACE.
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Fig. 1. System overview

This architecture results from extensive experimentakwbr a
preliminary phase (not described here) a wide range of adefior-
mations was considered and Support Vector Machine (SVMy-cla
sification experiments were undertaken on all sound vess{orig-
inals and deformed) which were used successively for tigiahd
testing. This allowed us to study how the application of theiade-
formations influence both the learning process and decigking.

In this paper, we show how we use the prior knowledge acquired
during these preliminary experiments to implement a motriso
classification system.

Following a brief description of the audio deformations sida
ered and the feature extraction process in Sections 2.1 2nava
recall the robust feature selection strategy in Sectiorb2fdre we



introduce the use of the virtual support vector machinesirtisn 3.
We proceed to the experimental validation in Section 4 agest
some conclusions.

2. ACOUSTIC FRONT-END

2.1. Audio effects considered

Efforts have been dedicated to establish an inventory dbaaftects
commonly used in the audio creation process. It is worthnigathat
the application of some of these effects, typically reveaben, can
be viewed as a way of simulating recording conditions whase p
rameters are in fact not directly available. With the helaofaudio
engineer, a subset of inescapable audio effects, both isttltio
and live recording situations, have been chosen. The paeairse
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Fig. 2. Gain curves of the 4 equalizers used which will be referred

tion of the chosen effects have been made in such a way that tH@ 8EQ1, EQ2, EQ3 and EQ4 going from bottom to top in the

deformations remain perceptible and realistie, without drasti-
cally changing the timbre of the instrument sounds in a matira
would make them unrecognizable. The following three efféztve
thus been selected.

low frequency region.

statistical moments as well as amplitude modulation festur

- Reverberation (or reverb), which can be seen as a way of simu- - Finally, theperceptual features consist of the relative specific loud-

lating room acoustics, is probably one of the most utilizéfdots
in post-production. It is applied especially when the mptrone is
placed close to the instrument or the voice that it is capguriOne
way of applying reverb to sounds is by convolving the sigmatk a

ness, sharpness and spread [11].

We thus get a total of 401 initial feature coefficients. Ak fleatures
are extracted using 32-ms length frames with a hop size of 4,6 m
except the AM features for which 960-ms length and 480-msizep

room impulse response. In our work, we have used the poposar s are used.

software [8], with the default reverb configuration.

- Equalization consists in attenuating or amplifying some spectral, 3 Robust Feature Selection (RFSA)

components of a sound, hence modifying its timbre. Itis umedu-
dio engineers for the correction of some recording defagtsdally
room and microphone defects, microphone misplacemenyj, bttt
also for aesthetic reasons as part of the artistic procedsasdio
mixing and mastering. We have implemented an equalizer ittelda
after [9] and configured it by mimicking the presets which ewen-
monly suggested by popular audio players. Among the vadons
figurations initially considered, we have retained a speaifie that
was used as a reference to generate others by multiplyingtee
ence gains in each frequency channel by a constant. The gaiesc
of the equalizers which were obtained are depicted in Figufehe

The baseline automatic Feature Selection Algorithm (FSAictv

we use produces a ranking of the features based on a clasa-sepa
bility criterion, i.e. a ratio of inter-class to intra-class separability
measures (see [3] for the details). Tdhe= 30 top-ranked features
are then the ones which are selected. To make the FSA morstrobu
we prepare deformed versions of the training database, enséon

per considered deformation, and perform feature rankireg esch
one of these databases, in addition to the ranking of tharfesbver

the original training database. We thus obtain for eachufeabne
rank per database instance and compute its robust rank asehe

equalizerEQ- serves as a normalization bloc in the testing phase aage of these. This approach, which we originally presemd8l]i

shown in Figure 1. This will be further explained in Section 4

has been further validated in this work (cf. Section 4) antll va

- Compression is used to reduce the dynamic of recorded audio sig+eferred to as RFSA.

nals. Low energy signal portions are not modified while higargy
ones are attenuated. Typically, it allows the audio engiteeaccen-
tuate the sustain parts of an instrument sound. We implesdemir
compressor after [10] and set the compression ratio to &Gattiack
and release times respectively to 1ms and 1s, and the thdetgho
0.5.

2.2. Feature extraction

We extract various audio features classicly used for owstfigation
task [11, 5]. They include spectral, cepstral, temporal@erdeptual
features.

- The spectral features consist of the first four spectral statistical
moments, the spectral irregularity and Octave Band Signehbi-
ties [5], the spectral slope, decrease, variation and &ecpuroll-off

3. VIRTUAL AUDIO SVM (VASVM)

SVM classifiers have proven efficient for a wide range of dfecss
tion tasks and have become very popular in various reseaecs.a
We refer the reader to one of the many good tutorials on thiepl
tool [13] and merely recall here the basic concepts whichefezred
to in the sequel. In bi-class problems, the SVM algorithnrcees
for the hyperplanev.x + b = 0 that separates the training samples
X1, ..., Xn Which are assigned labels, ..., y» (y; € {—1,1}) so
that

yz(xlw—i—b—&-&) —12>0,Vs, Q)

under the constraint that the distan‘(ﬁ,évW between the hyperplane
and the closest sample is maximglbeing positive slack variables

[11], as well as crest factors and MPEG-7 ASF (Audio Spectrurmused to account for outliers. Vectors for which the equality1)

Flatness) [12].

holds are called support vectors. Since the data is notrlineapa-

- Thecepstral features include Mel Frequency Cepstral Coefficients rable in the original feature space, a kernel functigm, y) can be

(MFCCs) and others computed with a Constant-Q Transform.

used to map thd-dimensional input feature space into a higher di-

- The temporal features are the Zero Crossing Rates and temporalmension space where the two classes become linearly sépafab



test vecto is then classified with respect to the sign of the functionabsolute value. For our multi-class problem, a "one vs ondts
f(x) = >, asyik(si, x)+b, wheres; are the support vectors; egy is used as in [5]. Additionally, we exploit the Gaussianniel

are Lagrange multipliers, and is the number of support vectors. f(z ) = exp (_ lz=v1 ) \We tune the SVM hyper parameters,

Hence, the solution only depends on these support vectors. . 2do? L .
. . : . i.e. parameteC’ and kernel parameter, by considering a grid of po-
Now our purpose is to incorporate prior knowledge about in-

variances in the classifiers, which can be achieved usingsthe tentially useful values and performing 5-fold cross valiioka (where

. . we use only the training data) to select the most appropdags.
calledMrtual S/Ms. This technique was proposed by Decoste andNote that optimal parameters are sought after for each dbtlusv-

Scholkopf and successfully applied to handwritten digétognition ing classification schemes that are tested.

[7]. The '.dea IS to P?r.fom.“ leaming in three stepg. . In order to gain a deeper understanding of how the proposed en
1._ c_lassm SVM training is done on the set of training examples hancements act on the system performance, we have undegake
)2“5'd\lir;tguzlsfr;?rflii;pgggggggié {gséilgr;gd by applying ddsire intensive analysis of both the behavior of the features badtruc-
transformations to these support vectors, resulting intafsaew tre of the SVM classifiers, after the application of the efe For
. ' the former, we have measured the feature statistics anorpeet vi-

. e ; X Gual analysis to compare 3D plots of original and transfarfeature
Some prior "”OYV!edg,e on the classification proplem mymn subsets (possibly after performing Principal Componeralygis for
3— another training is performed on the set S, yielding anew  gimensjonality reduction). For the latter, we have beerceamed for
classifier that incorporates the invariances related taréimsforma-  jhstance with the “stability” of the support vectors. whether sup-
tions applied in step 2. port vectors in the solution trained over the original thagndatabase

Following the same ideas, we proceed as follows: remain support vectors when training is performed oversfiamed

1— do SVM training on the original data’; training sounds. These efforts have helped us answer muohrof
2— mark the audio frames corresponding to the support vectorgyestioning as will be discussed hereafter.

found, apply the sound effects to them and extract the szidet-
tures from the transformed audio frames, thus creating ¢hefs
virtual training exampless;
3— re-train the SVMs using the original feature vectéfsplus all  All the effects described in Section 2.1 have been incotpdrinto
the virtual ones ir§ created using all the effects. the system, except the compression which was found not tmdeg
We will refer to this approach as VASVM. Let us now present thethe performance of the reference system when applied toette t
experimental results which validate our classificatiomtsgy and ~ sounds. This finding is actually predictable since most efadio
discuss them. features are hardly impacted by varying signal dynamicadfition
to the fact that the baseline system standardizes all therésa[5]
(zero mean and unit variance over the training databasefehéis

4.2. Validation on the test set

4. EXPERIMENTAL VALIDATION system is already invariant under dynamic compression.

) - Table 1 shows the improvement achieved by our enhanced clas-
4.1. Experimental conditions sification system compared with the baseline system. Eaetobn
Six instruments are considered, namely, the Bassoon, Ghalé),
Cello, Guitar and Piano. Solo (unaccompanied) music wasrpied [ System | Accuracy |
from commercial recordings of each instrument. There isagete Reference system 753
separation between sources from which the training exsavpte RFSA 76.3
extracted and those providing the testing excerpteuece being a RFSA+VASVM 78.9
music recording such that, either the recording studioatttist or RFSA+VASVM+EQ2-Norm. 80.8

the instrument instance differs from one source to anofhieis al-

lows us to assess the generalization capabilities of thesifieation

system and observe how by incorporating invariances atrttie-t ~ Table 1. Average accuracy in % correct over the test database TDB.
ing stage, we are able to better classify the testing sourdshw “EQ2-Norm.” refers to the process of applying the equalizkp»
translate creation conditions that are significantly déffe: from the  to the test sounds.

ones related to the training sounds, thanks to this separagitween L o i o
sources. For each instrument class we use 22'54” of traidatg ~ ©Our enhancements (highlighted blocs in Figure 1) bringggaifsi
and 19'36” of testing data (the test database will be reeteeas ~ C&Nnt accuracy gain. We obtain a 5% accuracy improvemeng usin
TDB). The number of training sources varies from 4 to 8 petrins ~ the features selected by the robust FSA, the audio virtuall $kis-
ment and we use from 5 to 6 other testing sources per instrumengifiers and the test sound pre-processing by the equaliggy. Itis

For the scoring, we use the average recognition accurav@sadl ~ Important to note that in our experiments the VASVMs have/gro
the instruments. In fact, we classify 356-ms length segmézn 0 be even more efficient than the SVM classifiers trained dwer
frames over which we perform early temporal integration rghg ~ Union of the original an.d all the transfqrmed training datsgs (in-
the mean of the corresponding 20 feature vectors is comgaipd ~cluding all sounds). This can be explained by the fact tha&kM
and compute the average accuracy over all these segments. Cdéarning becomes more and more complex as the training afsab
sequently, the resulting 95% confidence intervals for theimzies ~ 9ets larger and larger. By augmenting the original databgsenly
that will be given are tight enough to allow us to considep@sore  the virtual examples (which tend to stay around the origingiport
differences as statistically significant. All the signale downsam-  Vectors) the leaming algorithm seems to converge to a mptie 0
pled at 32kHz and normalized to have zero mean and unit mamimu Mal solution. The other advantage of the approach is thatsomet
obliged to apply the effects to all the training sounds asifices

Irecall that collecting this type of data is very difficult loenone cannot to.t.rans.form th? Ol'igin?-' support vector frames. This magobee
always have as many sources as one might desire critical if one wishes to incorporate more and more effects.




4.3. Validation on an extended test set

To confirm that the system has incorporated the desirediancgs,
we applied the considered effects to the test database T&fall(r
that it is distinct from the training database) and testezheme of
the 5 new test databases (one per effect) with our improeessifiers
(RFSA+VASVM). Table 2 sums up the results obtained.

Our strategy turns out to be effectively robust to audioaffe
While the performance of the reference system may sericdesly
grade on some of the transformed databases, especially FQB;+
the accuracy of our improved system remains always grdsarthe
reference system accuracy on TDB. Moreover, the mean amycafa
our proposal over all the test databases is more than 3%egtean
the reference. Again both the robust FSA and virtual SVivhirgj
appear to be advantageous, although a stronger contribiatithe
improvement is brought by the VASVM approach.

| Testdata || Reference] RFSA || RFSA+VASVM |
[ TDB [ 753 | 76.3 | 78.9 |
TDB + reverb 73.3 73.6 76.7
TDB + EQ4 70.6 71.2 75.9
TDB + EQ3 73.8 75.0 78.3
TDB + EQ2 77.7 78.4 80.8
TDB + EQ: 78.1 78.7 80.6
[ Mean [ 748 | 755 ] 785 |

Table 2. Average accuracy in % correct over the TDB and its 5
versions transformed with the audio effects considerethguthe
same improved classifiers RFSA+VASVM.

Also of note is the fact that the scores over the test souads-tr

formed byEQ: and EQ- are always greater than the ones measured

over the remaining databases. This observation has medivet to
systematically pre-process the test signalg:dy- in our final sys-
tem. It is worth mentioning that the benefits of this pre-pssing
stage have been further validated on a third completelyermdifft
database (distinct from the training and the testing datbare-
sented here) as we observed again a greater performancé& gfte
normalization, compared to no pre-processing of the sotmde
classified. From the gain curves presented in Figure 2 it esgebn
that the equalizer&Q: and FQ- tend to emphasize the spectral

components between 150 and 1500 Hz where most of the first par-

tials of music notes occur, on average over many excerpts.dif-
ficult to interpret why this would be beneficial to the clagsifion
performance. Yet, through our analysis we have been ableth w
out that the application aFQ» and EQ; tend to decrease the fea-
tures intra-class variance, in contrast to other effe@ach making
the features more stable.

Another interesting question is: how should one choose tthe e
fects to be incorporated? We suggest applying the candintege to
the testing database to check whether a reference clagsfifar-
mance degrades on the transformed sounds. If no accuracg-deg
dation is observed (as it was the case with the compressionrin
study) there is obviously no need to incorporate those &ffethe
more important question is how to choose the selected effemt
rameters? We have been able to verify that it is importanhtmse
complementary parameters as we did witys and £Q .+ which are
the symmetric versions dfQ; and EQ-. The average accuracy on
all the test databases falls to 76.3% wHe®: and EQ- are incor-
porated withoutE Qs and EQ.4, and to 74.4% when proceeding the
other way round.

5. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a method for incorporatimy pr
knowledge on the process of music recording and post-ptmauc
into audio classifiers. By choosing relevant audio effest$ecting
robust features, performing virtual audio SVM training armtmal-
izing the sounds to be classified using a specific equalizer,can
achieve significantly better classification performancempared
with a standard approach. The improved system becomesantar
under the effects incorporated, hence more robust undgingame-
dia creation conditions. Up to 5% improvement in the rectigni
accuracy of an instrument classification system was oldaivith
the proposed method.

Future work will look at incorporating more audio effectada
chiefly the optimal way of superposing the various effecte Will
also try to validate the method on other audio classificagiab-
lems.
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