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ABSTRACT

In this paper we propose a non-negative matrix factorization

(NMF) model with piecewise-constant activation coefficients.

This structure is enforced using a total variation penalty on

the rows of the activation matrix. The resulting optimiza-

tion problem is solved with a majorization-minimization pro-

cedure. The proposed algorithm is well suited to analyze

data explained by underlying piecewise-constant sequences

of states. Its properties are first illustrated using synthetic

data. We then use it to solve a video structuring problem that

involves both segmentation and clustering tasks. An improve-

ment over a state-of-the-art temporally smoothed NMF algo-

rithm of both clustering and segmentation quality measures is

observed.

Index Terms— Non-negative matrix factorization, tempo-

ral smoothing, total variation

1. INTRODUCTION

There exists numerous tasks where the data can be explained

by locally invariant conditions: DNA sequences are formed

with homogeneous sequences [1]; homogeneous region can

be identified in images [2]; videos can be segmented into

shots or more elaborate sequences [3], and a relatively sta-

ble spectral content is observed along one note in music tran-

scription [4].

NMF is a standard tool to analyze non-negative data: its

properties, assessed in [5], allow to identify recurrent situa-

tions (the same notes in audio recordings, similar sequences

in videos), and to summarize data using only a few charac-

teristic patterns grouped into a codebook, and associated ac-

tivations. In its basic version, NMF makes no assumptions

about the activations, which is suboptimal if data are tempo-

rally ordered and if we assume some specific knowledge: for

the aforementioned problems, we expect piecewise constant

activations (of some textures along one area or descriptors

along time); it is therefore natural to encode this prior using a

total variation penalty.

Building upon both the segmentation algorithms using to-

tal variation, and previous experimentations of NMF with

temporal smoothing constraints, we propose a new kind of

temporally regularized NMF. Section 2 describes our model,

an effective algorithm is derived, and we discuss prior work.

In Section 3, we study the properties of the proposed algo-

rithm on both simulated data and a video structuring problem.

2. METHODOLOGY

After a brief reminder of NMF, we propose an optimization

algorithm of a cost functional including a penalization of the

total variation. We then discuss relations with prior work.

2.1. NMF and total variation penalty

The problem of NMF consists, given a matrix V ∈ R
F×N
+ , in

computing a matrix W ∈ R
F×K
+ and a matrix H ∈ R

K×N
+

such that V ≃ WH . The non-negativity of the coefficients

of the matrices involved yields a non-subtractive, part-based

representation [5]. The columns ofW can be seen as patterns,

or dictionary entries, while rows of H can be associated with

regression coefficients, or activations. N corresponds to the

number of observations (each column of V being one obser-

vation),K to the number of components, and F to the dimen-

sionality of observations. For the tasks considered here, we

look for solutions where K ≪ N .

Considering some measure of fit D, the matrices W and

H can be computed by looking at the optimization program

min D(V |WH) with respect to W and H , under the non-

negativity constraints W ≥ 0 and H ≥ 0. If we suppose that

the columns of V correspond to regular, temporally ordered

measurements, and try to favor temporal continuity by retain-

ing solutions where rows of H tend to be piecewise constant,

it is natural to formalize our problem via the following opti-

mization problem, where hkn denotes the coefficients of the

matrix H :

min
W,H

D(V |WH) + βs

K
∑

k=1

N
∑

n=2

∣

∣hkn − hk(n−1)

∣

∣ ,

s.t. W ≥ 0, H ≥ 0. (1)

As illustrated below, the ℓ1-norm used here will indeed fa-

vor solutions where the derivative of each row ofH is sparse,

and consequently piecewise constant activations.

Still, this simple implementation unfortunately leads to

solutions where ‖H‖ tends towards 0, since it is possible to



reduce the penalty without affecting the “fit” part, by acting

on the scale ambiguity between W and H . We consequently

introduce the diagonal matrix Λ ∈ R
K×K , with k-th diagonal

coefficient λk =
∑

f wfk, which in fact corresponds to a rig-

orous variable change (see [3]), and consider the optimization

program:

min
W,H

D(V |WH) + βs

K
∑

k=1

N
∑

n=2

∣

∣λkhkn − λkhk(n−1)

∣

∣ ,

s.t. W ≥ 0, H ≥ 0. (2)

The term βs is simply a weighting hyperparameter, allow-

ing us to choose solutions with arbitrarily settled temporal

smoothness priors.

2.2. Optimization algorithm

We choose here to use a majorization-minimization (MM) al-

gorithm [6, 7], that will sequentially update W and H . The

MM algorithms consist in building, for each iterates, an auxil-

iary functionG that majorizes the original cost function. G is

sought to be easy to minimize and tight at the current values of

W and H . Consequently, finding a minimizer of G will give

a new iterate that corresponds to a lower value of the original

cost function. The resulting algorithm – findingG for the cur-

rent iterates, minimizing G with respect to W , finding G for

the new iterates, minimizing G with respect to H , and iterate

– can therefore be proven to return iterates corresponding to

a strictly decreasing and convergent cost function.

The update rule is given below only for H , but can be

derivated for W following the same process; moreover, in

view of the application considered in Section 3, we treat

here the situation where the measure of fit D corresponds

to the sum over the coefficients of the element-wise general-

ized Kullback-Leibler divergenceDKL (x|y) = x log (x/y)−
x + y; depending on the needs, it is possible to treat the

situations where D is the Euclidian distance or the Itakura-

Saito divergence, using a similar approach. Indeed, resort-

ing to a convex-concave-constant decomposition, [7] pro-

pose a generic way to build the functions G when D is a

β-divergence. We use similar notations: h̃kn are the coef-

ficients of the current iterate of H , and denoting by ψkn =

h̃kn
F
∑

f=1

wfk

(

vfn/
K∑

k=1
(wfkh̃kn)

)

we get:

G(H |H̃) =

K
∑

k=1

N
∑

n=1

(−ψkn log hkn + λkhkn)

+ βs

K
∑

k=1

N
∑

n=2

λk
∣

∣hkn − hk(n−1)

∣

∣+ cst. (3)

G(H |H̃) is a mono-valued majorizing function, built at the

point H̃ . The dependency on H̃ is implicit below. We can

take its subdifferential w.r.t. hkn and obtain:
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Fig. 1. Update h̄kn returned by the proposed algorithm as

a function of the update that would have been returned by a

classical NMF in a similar situation, using respectively βs =
0.05 (stars) and βs = 0.1 (circles).

∂hknG(hkn) =
−ψkn

hkn
+ λk

+ 2βs |λk|
(

sign(hkn−hk(n−1))+sign(hkn−hk(n+1))
)

. (4)

Where sign (x) is the sign function defined by sign (x) = 1
if x > 0, sign (x) = −1 if x < 0 and sign (0) is the

interval [−1, 1]. From the equation 4, it is readily shown

that there exists an unique positive value of hkn, denoted

by h̄kn, that cancels the subderivative and minimizes G.

Denoting by hc1 = min
(

hk(n−1), hk(n+1)

)

and hc2 =

max
(

hk(n−1), hk(n+1)

)

, and using − and + to denote re-

spectively their left and right limits, the solution can be sum-

marized as follows:











h̄kn = hc1 , if ∂hknG(h
−

c1) ≤ 0 and ∂hknG(h
+
c1) ≥ 0

h̄kn = hc2 , if ∂hknG(h
−

c2) ≤ 0 and ∂hknG(h
+
c2) ≥ 0

h̄kn =
ψkn/λk

1+4βs(1(∂hknG(h+
c2

)<0)−1(∂hknG(h−

c1
)>0))

, else.

(5)

The update rule is illustrated in Figure 1, and can be inter-

preted as a soft thresholding: if the new iterate for hkn is “nat-

urally” (taking into account only the “fit” term) comprised

between the values of the neighboring coefficients hk(n−1)

and hk(n+1), each one “pulling” in opposite directions, the

smoothing effect is canceled and the returned solution is ex-

actly the same as for a classical NMF algorithm. Otherwise, if

h̄kn is far enough, depending on the value of βs, from neigh-

boring coefficients, it is simply shifted in comparison with a

classical NMF solution; it is on the other hand projected onto

the same value if one neighbor is close, resulting in constant

segments.

It should be noted that each iteration has a linear cost of

O (FKN). Using K = 5, F = 128 and N = 12000, a

Matlab R2012b implementation needs around one minute to

perform 300 iterations on a 2.8 GHz quad-core computer.



2.3. Related work

The idea to smooth activations in NMF has already been put

into practice. Especially, [3] and [8] use an algorithm where

an ℓ2-norm is used in lieu of the proposed ℓ1-norm. Temporal

smoothness has also been enforced using other kind of penal-

ties, related to Gamma chains, with both Kullback-Leibler

[9] and Itakura-Saito [10] divergences, or explicitely model-

ing the ratio between short-term and long-term variance as in

[11]. However, all the proposed penalties result in soft acti-

vations, only promoting a correlation between the columns of

H , while we need sharp activations if we want to precisely

identify and delimit areas in the data.

In a completely different context, it has been shown

early in [12] that the total variation had a piecewise constant

solutions-promoting property. This property has then been

put to good use for segmentation tasks in [13], where a total

variation penalty is used as a preprocessing step: the idea is

to approximate available data by piecewise constant models,

where the jumps are seen as a supplementary penalty.

This principle can be transposed to NMF; with the ex-

ception of the Euclidian distance as a measure of fit [14] the

combination of NMF and total variation is new, yields sharp

activations, and leads to an algorithm that is unsupervised.

3. EXPERIMENTAL VALIDATION

We now use the proposed algorithm, first on a synthetic ex-

ample, then on a video structuring task, to illustrate its possi-

bilities.

3.1. Illustration with simulated data

We build here a synthetic example, in order to illustrate the

properties of the proposed algorithm: a matrix V ∈ R
20×240
+

is computed, using a randomly generated matrixW ∈ R
20×2
+

and a matrix H ∈ R
2×240
+ with piecewise constant patterns

of zeros and ones (see Figure 2). We then try to factorize Ṽ ,

a version of V corrupted by a Poisson noise, using different

algorithms.

The results are presented in Figure 2, where the first row
of the matrix Halgo returned by the algorithm is compared to
the associated line of the generated ground truth H . We can
see in (a) that the standard NMF algorithm gives noisy re-
sults, whereas the proposed algorithm returns piecewise con-
stant ones in (b), as explained in Section 2.2. Finally, an al-
gorithm where the ℓ1-norm in the total variation is replaced
by a ℓ2-norm, as made in [3], also smooths the rows ofHalgo,
but the jumps are not entirely preserved, as illustrated in (c).
Though the noise is not so high here that it would prevent
a segmentation, it is clear that piecewise constant activations
are of advantage in more delicate situations.
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Fig. 2. Influence of the temporal smoothing terms. One row

of H is displayed. The ground truth corresponds to dotted

lines, the solutions given by the algorithms to dashed lines

(first setting of βs) and continuous lines (second setting).

3.2. Application to a video structuring task

The proposed algorithm is then tested on the 33 first videos

of the Canal9 political debates database [15]. These videos

feature different guests, and our objective is to identify the

different phases: at each time, the algorithm must indicate

who is onscreen, or answer that current images correspond to

an establishing shot. The tests are made using 8 minute-long

video sequences. One sequence is used per video, that starts

at 3 minutes and 30 seconds.

The videos are first described as factorizable matrices V ,

following the process proposed by [3]: a codebook of visual

words is first learned using PHOW descriptors and a K-means

algorithm; then, the occurrences of the different words in-

cluded in the images are aggregated over sliding windows.

In the end, columns of V correspond to histograms of visual

word occurrences. This justifies the use of a Kullback-Leibler

divergence, since it is adapted to multinomial distributions

[16, 17] and hence for the histograms data we use. Because of

the properties of NMF, the factorsW andH will respectively

be formed with characteristic video templates and template

activations, corresponding to onscreen speakers appearances.

Simply thresholding these activations will therefore give the

desired results.

We will compare our algorithm with a simple NMF, and
the state of the art algorithm proposed in [3], that uses a ℓ2
penalty to enforce the temporal smoothing prior. Choices
must be made for the smoothing hyperparameter βs for the
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Fig. 3. ROC curves for the proposed total variation-based al-

gorithm (stars) and an algorithm using a ℓ2 penalty (crosses).

latter and the proposed algorithm, as well as for the used
threshold. We retain the proposed value βs = 0.1 for the
ℓ2-based algorithm, and available videos are separated into
a development set of 10 videos and a test set of 23 videos.
The development set is used to settle βs = 0.01 for the stud-
ied ℓ1-based algorithm. The thresholding is made as follows:
each row of H is linearly rescaled to the unit interval, before
a threshold of 0.5 (half the maximum) is used. This choice
is retrospectively justified in Figure 3, where the mean preci-
sion and recall of shots identification are given, using different
thresholds. The adopted value of 0.5 seems indeed to give the
better trade-off for both algorithms.

Each algorithm is run 20 times, with random initializa-

tions; only the run corresponding to the final lowest cost func-

tional is retained. The overall structuring errors, correspond-

ing to the proportion of images wrongly labeled, are presented

in Figure 4. The mean structuring error over the test set are re-

spectively of 22.5% (standard NMF), 20.7% (ℓ1) and 21.5%
(ℓ2), meaning that the proposed algorithm yields an improve-

ment. By further investigating the results, we found that the

mean rank correlations between the final cost functional and

the structuring error, over the test set and along the differ-

ent runs, were respectively of 0.3, 0.38 and 0.29. It is in-

deed expected that better optimization results will correspond

to better solutions, and therefore that there exists a statistical

monotonic relationship between the structuring error and the

functional cost. The observed improvement of the structuring

error is hence related with a better identifiability of the “good”

results: the ℓ2 penalty does not model optimally the consid-

ered problem, and leads to high costs for some solutions that

were sensible from a structuring error viewpoint; on the other

hand, the ℓ1 norm does not penalize too much situations – cor-

responding to numerous segments in the activations – where

(e.g.) speakers frequently interrupt each other, as long as they

are well distinguished by the algorithm.
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Fig. 4. Overall structuring error in % and box plots associ-

ated with per-video scores, respectively for a standard NMF

algorithm, the proposed total variation-based algorithm, and

using a ℓ2 penalty.

Without even resorting to a threshold, we can perform a

hard clustering of the shots, by labeling the data with the in-

dex of the row corresponding to the highest value in H at a

given time. The quality of the clustering can be evaluated

by computing the mean Rand index R [18] over the test set.

Note that R ∈ [0, 1], the highest values are the better. We

obtain R = 0.90 and R = 0.88 for the ℓ1 and ℓ2 algorithms,

respectively. Finally, the results can be evaluated from a seg-

mentation point of view, by assessing the precision and the

recall of the identification of jumps with a framewise accu-

racy. While we have a precision of 0.50 and a recall of 0.77
for the ℓ1 algorithm, we obtain a precision of 0.48 and a recall

of 0.74 for the ℓ2 algorithm.

The proposed total variation-based algorithm systemati-

cally proves to be a preferable solution, using diversified eval-

uation metrics focusing on clustering or segmentation errors.

It is furthermore very generic, and could be applied to all the

situations mentioned in Section 1 where underlying segments

can explain observations.

4. CONCLUSION

The penalization of total variation, usually restricted to de-

noising or segmentation problems, presents the interesting

property to promote piecewise constant solutions. In this pa-

per, we have shown that this penalization could also be used

for NMF, with similar consequences. The proposed algo-

rithm, taking advantage of the included temporal smoothness

prior, facilitates clustering and segmentation tasks, as illus-

trated in Section 3. It could therefore be used for a wide va-

riety of problems where we expect data to be explained by

locally invariant conditions.
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