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ALGORITHM AND ”"TRANSIENT + SINUSOIDAL” SCHEME

Rémy Bover, Slim Essid

ENST, Dept. of Signal and Image Processing
46, rue Barrault - 75634 Paris cedex 13
boyer,essid@tsi.enst.fr

Abstract: [n this paper, we present an efficient modeling method for strong transient character audio signals, It is shown that the
parametric non-stationary Exponentially Damped Sinusoids (EDS) model permits good performance for time domain modeling of
quasi-stationary signals or “weak” transients. However, a decay in modeling performance is observed when dealing with highly non-
stationary signals as in a variety of musical sound (various percussions, castanets, triangle, ...). The idea is then to process the signal
in a well chosen frequency-transform domain in which the transient temporal characteristics are better modeled by EDS. As a resuli,
better representations of the transient signal class are obtained with no pre-echo artifacts (energy before the attack} and a very good
signal onset dynamic reproduction. Finally, an original “Transient+Sinusoidal” modeling scheme is proposed.

1. INTRODUCTION

Audio signals (speech and music) present a wide diversity. A
rough classification would consider three main categories. The
first would consist of stationary and quasi-stationary signals
such as horn sounds or speech voiced sounds. The second
would be the class of “weak” transients such as speech plo-
sives for example and finally, the “strong” transient signals cat-
egory. The first two classes of sound are well represented with
parametric stationary models i.¢ sinusoids [1] or non-stationary
models i.e Exponentially Damped Sinusoids (EDS) [2], [3], [4}
which has been mostly used for EDS-based speech modeling.
Now, it has been shown in [2], [5] on a castanets sound sam-
ple that a decay in modeling performance is observed with such
“stronng” transient signals. Modeling characteristic artifacts are
then crealed with two effects. First, the apparition of a pre-echo
signal /.e a distortion before the sound attack [6]. Second, the
signal dynamic is badly reproduced. These phenomena appear
to be very prejudicial to the auditory perception of the third cat-
egory sound,

Based on the time-frequency duality principle, we propose to
show that EDS modeling of strong transient signals in a well
chosen frequency-transform domain enables pre-echo cancel-
lation as well as reproducing the proper signal dynamic. We
therefore, introduce the Frequency-Transform Subspace Algo-
rithm based on the EDS model (FTSA-EDS).

The outline of the paper is the following. In section 2, we
present the EDS model and a brief sum-up of the Subspace Al-
garithm (SA-EDS) for the model parameters determination. In
section 3, we introduce time-frequency duality as well as the
chosen transform. In section 4, we exhibit the FTSA-EDS al-
gorithm and show its performance on a typical example of real
strong transient signals. Finally, in section 3, an original “Tran-
sient + Sinusoidal™ modeling scheme is presented.

2. THE EDS MODEL AND THE SUBSPACE
ALGORITHM (SA)

2.1. The Non-stationary model : EDS signals

We define the Exponentially Damped Sinusoidal (EDS) model
by

M
i(n) = Z ame™™ " cos (Wmn + ) ()

m=1

and

M
&a,z) = % {Z {amzim +a:,lz,'.,1:)} e RY*!
m=1 0<n<N—1

()
where D = 2M and M is the modeling order, ay, =
ame'®™ is the complex amplitude and z, = edmHwm g
the complex pole. We also denote the m-th real amplitude
by @m, the m-th real damping factor by dp, the m-th angu-
lar frequency by wm and the m-th initial phase belonging to
{0, 27 by ¢¢m. We define the vectorial notations as follows :

a={mal...opnai)T and 2 = (zzf .. 2 2i) 7.

2.2. The SA-EDS algorithm: model paraineters processing

The D model parameters {ctm, zm } are determined through the
minimization of the following quadratic criterion

arg min||s — #(x, z) 3
where 5 € R¥*! is the signal to be modeled. A joint op-
timization with respect to {ex, £} is not possible in practice.
Thus, signal poles z are computed thanks to the line-shift in-
variance property of the signal basis vectors [7]. We then solve
the quadratic criterion (3) with respect to cx.

2.2.1. Poles processing
The poles are computed as follows.

1. Build H = H . (s) where 1 (8) defines the Hankel op-
erator within RV %! — R**Z (such that 2L = N —1) [7]
tobe Hr{s) =[s1| ... | sL] withse = (s{€)...s(£+
L — 1))T. Note that with no prior assumption on s, this
matrix is full rank (= L).

2. Determine the Hankel mattix %1 (8) of rank D'(< L)
that minimizes | H — ’HL(E)”i,, i.e, according to [8],

[H1 0 My o To]"(H) 25 #.(5) 0

where My (.), defined within R**X2 — RV¥X! i the
averaging on anti-diagonals operator and 7p(.) defined
within R™*% - R’ is the rank reduction operator
or “zero forcing” of the L - D smallest singular values.
Let 5 be the number of iterations and assume that n = 0

Uin an audio compression application, the parameter D is chosen to
reach a target bitrate,
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implies only the rank reduction operator is used. Then,
Ho(8) = Tp(H ). Note that, the Hankel character is then
not conserved, In practice, this approximation provides
satisfactory results.

3. Extract the matrix of the left D dominant vectors IJ =
[t1, ..., up] from Hr{8).

4. Determine signal poles through
== {UiU} (5)

where (.)! is the pseudo-inversion symbol, IFy {respec-
tively U'+) is the matrix U from which the last (respec-
tively, first) line has been removed and Ap{.} is the set of
the D eigen values. Finally, extract the angular frequen-
cies {wy, } and the damping factors {d,, } from the poles
{zom-1}.form=1,..., M.

2.2.2. Complex amplitudes processing

The criterion {3) has to be solved form =1, ..., M according
to

o = [em(z) ein(2)]'s ®
where € (2} = (1 2m ... 20 )7 and atm = $em o)T.
We have adopted this method for determining the complex am-
plitudes rather than a joint resolution of the criterion (3) with re-
spect to {m hi<m<m since the latter is more greedy in terms
of computational cost as it demands to pseudo-invert a N x D
matrix, N and M being large. [n fact, itis shown in [9] that es-
limaling ey, according to expression (6} is asymptotically con-
sistent {for N great enough). Finally, the real amplitudes {am }
and the initiai phases {¢m } can be extracted from {ovam—1}.
form=1,...,M

3. FREQUENCY-TRANSFORM

3.1. Duality between transients and sinusoids

Frequency-transforms such as Fourier's, Hartley's, cosine trans-
form (DCT-I-II-IEL-IV) and sine transform obey to the time-
frequency duality principle [10]. A Dirac-like shape in the time
domain turns inte an oscillating shape in the frequency domain
and vice versa. To illustrate this phenomenon, we consider
the Fourier Transform X (A) of a synthetic strong transient, the
DDS (Damped & Delayed Sitsoid) signal [5] defined as

£(n) = ae'PefmTI TNy ) )

(see figure 1-b), according to

X(A) =ae®5(Ake™™, A € [0,7] (8
where
1 - e(Nvﬁ)(l(U—;\)-Fd)
SN = ()

We denote by a,¢,w,d,t, respectively, the amplitude, the
phase, the angular frequency, the damping factor and the de-
lay parameter and 1(n}) is the Heaviside function. The X{X)
expression indicates that a delay ¢ results in an oscillating term
e~ in the Fourier domain. This classical result is illus-
trated on figure 1.

This principle in conjunction with the EDS model can be
used profitably. In effect, a sharp transient presents a singu-
farity that is similar to the signal in figures 1-(b)-(d). In this
case, temporal modeling of the signal by SA-EDS provides
poor performance (2], {5]. Yet, as the corresponding frequency-
transformed signal is essentially oscillating it is advantageous to
proceed to modeling in the frequency domain where SA-EDS js
more efficient, The fact is the signal on figure 1-d is much bet-
ter represenied by SA-EDS comparatively with the signal on

Lfu
S
(b} ()
L itffsrmon
i

Fig. 1. time domain, (a) sinusoid {DDS with ¢t = d =
0) (b) DDS with t = 50;(c) positive frequency domain (d)
Re{X(\)}/2

1-b. Note that this approach is more consistent whenever the
term —[dN] in the expression of X (A) is large enough (in ab-
solute value). In this case, S(A) = L. The ideal situation takes
place when either the analysis length IV is large or the transient
signal fades out abruptly i.¢ || is large. In other words, the tran-
sient temporal length should be smaller than the analysis length,
which can be controlled through a proper cheice of V. A rough
estimation of the delay ¢ is then t = N&/x, where & is the
estimated value of the angular frequency w of the transformed
signal.

3.2. DCT-IV transform expression

Letz € RY™! (he real audio signal observed on a IV length
frame. The transformed audio signal X & RY*? is defined as

X =Fn(x)=FWz (10)

where W = diag{h{(0},...,R(N — 1)} and ¥n, k(n) #
0 is a temporal weighting window such that W~ =
diag{1/R(0}, ..., 1/R(N ~ 1)} ie W™'W = In. Fn():
RY*' 5 R¥*! is the windowed DCT-1V transform. Note that
the V x N matrix

F = (gnk)n.k (“)

such that [10]
Tk = +/2/N cos ((n + 0.5)(k + 0.5)x /N) (12)

is real, symmetric and unitary (F~! = F = FT). Then
z = Fr' o Fy(x). Choosing the DCT-IV rather than other
frequency-transforms is justified by the fact that it is well
adapted to real signals and does not require any inversion pro-
cessing.

4. TRANSIENT MODELING METHOD

4.1. The FTSA-EDS algorithm

FTSA-EDS refers to Frequency-Transform Subspace Algo-
rithm with an EDS model and is described in this subsection.
First, the frequency transform of the transient signal  is com-
puted after it has been windowed. Then the signal is modeled
in the frequency domain according to the algorithm presented
in section (2.2). X denotes the estimated version of the trans-
formed signal X. Inverse transform and windowing is finally
applied to deduce the time domain eslimated signal & as shown
on figure 2. The process is summed-up in the table (1).

4.2. Simulation on real transient signals

The considered signal is 16 ms of a castanets sample (typical
percussive signal) which is shown on figure 3-a. This sample
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(1 Hi(X) = Hp o Fnlz)
A-EDS N

o weo EBY g

&) & = FFMX)

Table 1. FTSA-EDS algorithm

Fig. 2. Bloc diagram of the FTSA-EDS algorithm

is often used to illustrate a strong transient character audio phe-
nomenon {2], [5] and [6]. The sampling frequency is 32 kHz.
The modeling order is A = 40. The temporal weighting is
achieved with a Hamming window h{rn).

x 10t (a x 10% (<)
1 A 1
3 e
(778
° [ o
—0.5 0.5
4 -1
500 500
Lx10° ®) x10* @
T
4 1
0.5
e 0
1 ~0.5
_QL—— -1
500 560

Fig. 3. castanets onset, (a) original signal, (b) transformed sig-
nal () SA-EDS (M = 40), (d) FTSA-EDS (M = 40)

Figure 3-b presents the castanets signal in the DCT-IV do-
main, Figures 3-¢ and 3-d give modeling results with SA-ED:$
and FTSA-EDS, Two aspects should be stressed. The first is the

total absence of pre-echo with the FTSA-EDS modeling {cf -

figures 3-d) while such a distortion is observed with SA-EDS
modeling {c.f. figures 3-¢). The sccond is the great dynamic re-
production of the attack with FTSA-EDS comparatively to the
limited SA-EDS modeling case.

Figure 4 allows to work out both algorithms behavior. Model-
ing order is progressively increased, M = {2; 10; 20; 35} go-
ing from the top to the bottom.

It ¢can be noticed that the SA-EDS models signal all over the
analysis length which brings pre-echo even for a low modeling
order {c.f. figure 4-¢). On the contrary, FTSA-EDS only models
signal consistent part of the analysis window {c.f* figure 4-a,b,c
et d) and ne pre-echo is thus created.

5. PROPOSED ALGORITHM LIMITS AND
“TRANSIENT + SINUSOIDAL” SCHEME

5.1. Computational cost

Signal subspace methods are based on the the Singular Val-
ues Decomposition (SVD) of a structured L x L matrix with
L = N/2 [7]. Now, in audio compression context, analysis
windows of length 128 up to 2048 samples should be used to
get sparse representations (A < N) of the modeled signal.
This implies a high computational cost O(L*) for a straight-
forward SVD processing. lterative fast algorithms can be used
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Fig. 4. ‘castancts onser, progressive modeling (M =
2; 10; 20; 35), right part (a),(b),(c},(d) : FTSA-EDS, left part
{e).(0,(g)(h) : SA-EDS

to compute the sigral basis based on the Orthogonal Iterations
algorithm and the Lanczos algorithm as well as exploiting the
data matrix stracture through the use of the FFT. Computational
cost is then evaluated in terms of O(LD?) or O{DLlog L). A
panorama of these methods is presented in [7] and [12]. Note
that, improvements are achigved in choosing a frequency trans-
form that prevents any inversion and an EDS complex ampli-
tudes processing proper strategy. The utilization of fast algo-
rithms for our simulations has yielded a processing time to real
time ratio of order 6 on a Pentium I under Matlab 5.3.

5.2, Quasi-stationary segments modeling

On figures 5 and 6, modeling of quasi-stationasy speech and
bells signals is shown. Note that, while FTSA-EDS is as ffi-
cient as SA-EDS on the speech signal (see figure 5), it presents
limited performance on the bells signal (see figure 6). This is
due to the fact that the signal is very oscillating, so it has a
transieni representation in the frequency domain which is not
adapted to the EDS model,
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Fig. 5. speech segment,
(a) original signal, (b)
FTSA-EDS (M = 35),
(c) SA-EDS (M = 35)

Fig. 6. bells segment, (a)
original signal, (b) FTSA-
EDS (M = 35), (c) SA-EDS
(M =39)
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5.3. “Transient + sinusoidal” modeling scheme

In [6}, [10] and [11], a “Sinusoidal+Transient+Noise” (STN})
representation is developed. The FTSA-EDS which is appro-
priate for transient signals can be associated to sinusoidal mod-
eling so as to provide a high performance and varied audio sig-
nal “Transient+Sinusoidal” modeling scheme. The sinusoidal
analysis can be achieved by mcans of the SA-EDS algorithm
presented in section (2.2) applied to the sinusoidal medel®, or
spectral peak-picking techniques [1], or even Matching Pusr-
suit with a Fourier waveforms dictionary [10]. The “Tran-
sientHSinusoidal” modeling scheme is presented on figure 7.
First, the audio signal & is analyzed with the FTSA-EDS model
of order M3 so as to represent its transient part. Second, the
residual signal » = x — & is computed which essentially con-
sists of oscillating and noise components, Finally, SA-EDS
modeling is run with order My and ¥m, d, = 0 on the sig-
nal = providing #. The transient and sinusoidal parts are then
synthesized into & + # with a model order M; + M;. Note
that, in contrast to previous work on STN systems, the transient
part is modeled prior to the sinusoidal part. An example of a

Time domain
fsinusaical part]

Transfotrn domain
{fronsient part]

audio residual modeled
y signol £ signal

Fig. 7. “Transient+Sinuscidal” modeling bloc diagram

1024-sample drums signal {32 ms) modeled with this approach
is given on figure 8.
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Fig. 8. (a) Drums signal: x, (b) transient part : & (A = 25),
(c) residual signal : 7, (d) sinusoidal part : # (M, = 15), {e)
modeled signal : & + 7 (M) + My = 40)

6. CONCLUSION

In this communication, we have presented a strong transient au-
dio signals modeling scheme named FTSA-EDS (Frequency-
Transform Subspace Algorithm with Expenentially Damped Si-
nusoids model). The algorithm is based on the parametric non-
stationary model EDS and a signal subspace algorithm for de-
termining the model parameters. The analysis is made in the

Xm, dm = 0in expression (1),

DCT-IV frequency domain. Simulation results presented on a
typical transient signal, a castanets signai, allow to work out
the high performance of this approach. Pre-echo is completely
canceled and an excelient reproduction of the onset dynamic is
achieved. Finally, a “Transient+Sinusoidal” modeling scheme
is presented that allows to represent the wider variety of audio
signals which has been confirmed through informal listening
tests.
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