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Abstract

This paper introduces a new paradigm for unsupervised audiovisual document structuring. In this
paradigm, a novel Nonnegative Matrix Factorization (NMF) algorithm is applied on histograms of
counts (relating to a bag of features representation of the content) to jointly discover latent structuring
patterns and their activations in time. Our NMF variant employs the Kullback-Leibler divergence
as a cost function and imposes a temporal smoothness constraint to the activations. It is solved for
using a majorization-minimization technique. The approach proposed is meant to be generic and is
particularly well suited to applications where the structuring patterns may overlap in time. As such,
it is evaluated on a person-oriented video structuring task, using a challenging database of political
debate videos. Our results outperform reference results obtained by a method using Hidden Markov
Models. Further, we show the potential that our general approach has for audio speaker diarization.

Keywords: Content structuring, Unsupervised classification, Machine learning, Videos, Indexing,
Bag of features, Matrices.

1 Introduction

Automatic audiovisual document structuring stands as a key technological component as part of the
global effort to set up efficient multimedia and video indexing tools. In both the audio and visual
domains, highly sophisticated approaches have been proposed in previous works that mostly rely on
expert and specific techniques. A number of proposals employ supervised approaches exploiting prior
knowledge on the general structure of the type of documents to be processed and using domain rules
and specific concept or event detectors (typically playing field lines, ball hits and game-related events in
sports videos for example) [1, 25]. In our work we are concerned with unsupervised approaches that can
be applied generically to a wide range of audiovisual documents without the need to assemble training
data. In this case, the vast majority of state-of-the art approaches extract the document structure using
a form of clustering to group content units that were previously segmented by a change point detection
technique. In the video processing domain, these content units are generally shots to be grouped into
scenes [30], while in the audio domain they are merely abstract homogeneous content segments (hopefully
belonging to different sound classes such as music, silence, speakers, etc.), generally found by a variant
of the Bayesian Information Criterion technique [21].

For a wide range of audiovisual documents, for instance news programs, TV talk shows or series, a
semantically rich and useful video structure is one that is deduced after onscreen person and/or speaker
segmentation [25]. That is a segmentation mapping to the occurrences of onscreen persons and speakers
at every instant of the document (which is widely known as speaker diarization in the audio field). In
this case, the structuring events (here speaker/person occurrences) may overlap in time, hence creating
a serious difficulty for classic approaches where each segment of data is assumed to pertain to one of
several clusters. Consequently, when multiple events occur in some segments, each possible combination
of events should be modeled by a specific cluster. This is a combinatorial approach which may turnout
inefficient when the data is scarce.

In this paper we resort to a different approach which explicitly accommodates the composite nature of
audio and video data. By composite we refer to the possible simultaneous occurrence of multiple events.
First, and like previously mentioned methods, our approach takes the audio or video data (a given file) as
a time sequence of frames. In the video case, a frame is simply a single image. In the audio case, a frame
is a fixed-length audio segment (1.5 s in this paper experiments) and adjacent frames typically overlap in
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Figure 1: Approach overview. Top: PHOW feature extraction on a visual frame during vocabulary
creation phase (cf. Section 5.1). Bottom: Extraction of the state histogram descriptor on an audio signal
(cf. Section 5.2).

time. In our approach, each data frame is transformed into a “bag of words”, where the term “word” here
refers to a local attribute and frames are characterized by occurrence counts of these local attributes (in
a analogy with text retrieval, a frame is like a text document characterized by word counts). The set of
local attributes, referred to as “vocabulary” is file-specific and learnt for the entire set of frames as later
described. Similarly to probabilistic Latent Semantic Indexing (pLSI) [11], or more generally nonnegative
matrix factorization (NMF) with the Kullback-Leibler (KL) divergence [9], we propose to factorize the
resulting histogram data as the product of a “dictionary” matrix times an “activation” matrix. The
columns of the dictionary, akin to “topics”, will reflect the individual speaker/person signatures and
possibly other components such as image background or audio residual noise. Because time correlation is
an important feature of audio and video data, we introduce a novel KL-NMF algorithm that incorporates
a smoothness constraint on the activation matrix. Inspired by the work of Ding et al. [5] in the case
of NMF with the Euclidean distance, we also introduce a “convex” variant of the KL-NMF algorithm,
compatible with the smoothness constraint, which consists in constraining the dictionary elements to be
linear combinations of data points. Despite being more computationally intensive than standard NMF,
the convex variant will be shown necessary in the audio case, in which the data exhibit less structure.

Generally, the contributions are twofold. First, at the methodological level, we propose a new generic
structuring paradigm whereby, whatever the modality (audio or video), NMF is applied on histogram
descriptors relating to a bag of features representation, to jointly discover latent structuring elements
and their activations in time. Second, at the algorithmic level, we describe a majorization-minimization
algorithm for novel smooth and convex variants of KL-NMF.

Note that NMF has been considered for the related task of audio or video classification with diverse
usages, but generally at the feature extraction stage. For example, a notorious application of NMF is
local feature extraction from face images [13, 17]. In our setting, NMF is instead used at the classification
step, after the bag of words transformation. The closest to our work is probably [10] which considers clas-
sification of landscape images based on NMF of local color histograms. Our work considerably develops
both the feature extraction and factorization parts, and its application to the multimedia segmentation
problem is, to our best knowledge, entirely novel.

The outline of the paper is the following. We start by an overview of our approach in Section 2, and
present the NMF algorithms in Section 3. We then present two applications of our paradigm in Section 5
that are evaluated in Section 6, before we suggest some conclusions.

2 Approach overview

Our recipe can be roughly accomplished as follows:

1. create a low-level (visual/audio) word vocabulary and use it to extract histograms of word occur-
rences from the sequence of observation frames at the temporal granularity of interest;

2. apply a variant of Nonnegative Matrix Factorisation (NMF) on the matrix assembled by stacking
the word-histogram descriptors column-wise, using the Kullback-Leibler (KL) divergence, adding
convexity and temporal smoothing ingredients, so as to extract latent structuring events from the
document and their activations across its duration.

Both this general approach to audiovisual document structuring and the NMF variants we propose
are completely novel. We will show that NMF is able to discover relevant structuring events as they are
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by essence recurrent events. The scheme proposed here is in fact totally generic without preventing one
from constraining the semantics of the structure to be extracted. Indeed, the semantics can be imposed
by a proper choice of vocabulary. For instance, for the application chosen in this paper to instantiate our
paradigm, the features used are relating to audio or visual attributes characterizing speakers or onscreen
persons. We believe any other type of structures could be extracted following the same scheme merely
by adapting the features and the observation time horizons.

An overview of our approach applied to person-oriented video structuring is depicted in Figure 1. The
visual and audio streams are first processed in two different threads following the same recipe mentioned
earlier. The NMF algorithm represents the (audio or visual) word-histogram descriptors as the activations
of particular basis vectors (to be associated in this application with target persons) at every time instant.
By thresholding the activations, speaker/person spotting information is deduced.

The vocabulary words are extracted specifically for the video being processed following different
procedures for the audio and visual modalities. For our person-oriented structuring tasks we adopted the
following:

• For the visual content, the vocabulary is constructed using only the frames where faces have been
detected. A variant of dense SIFT features is extracted from face and clothing regions of the image
and used to build the visual word dictionary (which will be further described in Section 5.1).

• For the audio, a low-level segmentation is obtained by fitting a Hidden Markov Model (HMM) to
the sequence of short-term Mel Frequency Cepstral Coefficients (MFCCs) extracted from the signal,
before Viterbi decoding, hence labeling the audio frames with the decoded sequence of states. The
audio word vocabulary is thus composed of the set of HMM states learned, and a bag of features
representation is obtained by counting the occurrences of states in a temporal integration window
covering a sequence of local frames (see Section 5.2 for details).

Once the descriptors have been extracted, they are processed by an NMF algorithm, as explained in
the next section.

3 Smooth and convex NMF for histogram sequences processing

3.1 Motivation

Given histogram data V with coefficients vfn representing the contribution of descriptor-component f at
frame n, we seek a factorization of the form

V ≈WH (1)

where W and H are nonnegative matrices of dimensions F ×K and K×N , respectively, with coefficients
wfk and hkn. We will denote by vn, wk and hn the columns of V , W and H , respectively. We seek to
retrieve patterns characteristic of each individual speaker/person in the columns of W while the rows of
H represent the activation of these patterns along the video. Because we assume an additive model in
the data domain, we allow two speakers to be active in a same frame n. This is in contrast with usual
mixture of distributions models which instead assume a model of the form vn ≈ hknwk with probability
αk, i.e., a model in which each data frame vn is the expression of a unique “event” (either a single
speaker, or a certain combination of speakers, but where each possible combination has to be modeled
by a specific state). Given a factorization of the form (1) we will base our speaker detection criterion on
the amplitudes of the coefficients of H , using appropriate thresholding.

3.2 Specifications

3.2.1 Measure of fit

We seek an approximate factorization (1) in the Kullback-Leibler (KL) sense, i.e., such that DKL(V |WH)
is small, where

DKL(V |WH) =
∑

fn

dKL(vfn|
∑

k

wfkhkn) (2)

and where

dKL(x|y) = x log
x

y
− x+ y (3)

is the generalized KL divergence (sometimes referred to as I-divergence). The generalized KL divergence
is commonly used measure of fit for histogram data, and in particular, in the context of NMF, it derives
from a natural probabilistic model, see, e.g., [9].
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3.2.2 Smoothness

Because we are dealing with time series of histograms, a certain amount of correlation is to be expected
between columns of H . As such, we propose to regularize the factorization (1) by a smoothness-favoring
penalty on H , chosen as

S(H) =
1

2

K
∑

k=1

N
∑

n=2

(hkn − hk(n−1))
2 (4)

More elaborate smoothness constraints, derived in a Bayesian setting from hierarchical Gamma chains,
and offering a shape tuning parameter, have also been considered in the audio literature [29], but we here
resort to the more standard smoothness measure (4) for which we will derive an original algorithm in
Section 4.1.

3.3 Forming the objective function

Assembling the previous specifications, we are left with the following minimization problem:

min
W,H

C(W,H)
def
= DKL(V |WH) + βS(H) s.t W ≥ 0, H ≥ 0 (5)

where β is a fixed nonnegative scalar, weighting the penalty, and A ≥ 0 expresses nonnegativity of the
coefficients of matrix A. As it turns out, a solution (W ⋆, H⋆) to (5) may only satisfy ‖W ⋆‖ → ∞ or
S(H⋆) = 0 (i.e., h⋆

kn is constant w.r.t n). To see this, let us assume that there exists a solution to (5)
such that ‖W ⋆‖ <∞ and S(H⋆) 6= 0. Let Λ be a diagonal matrix of “scale” factors λk, with 0 < λk < 1,
and let W • = W ⋆Λ−1, H• = ΛH⋆. It follows C(W •, H•) = DKL(V |W ⋆H⋆) + β

∑

k λ
2
kS(h⋆

k), where hk

denotes kth row of H . Thus, we obtain C(W •, H•) < C(W ⋆, H⋆), i.e., a contradiction. As such it appears
necessary to control the norm of W , and we propose to subject the minimization (5) to the additional
constraint that ‖wk‖ = 1, where ‖ · ‖ is taken in the following as the ℓ1-norm. When S(H⋆) 6= 0, this
prevents from ‖W ⋆‖ → ∞ and when S(H⋆) = 0 (an unlikely but admissible solution) this simply solves
the scale indeterminacy that exists between W and H . In the end, we want to solve

min
W,H

C(W,H) = DKL(V |WH) + βS(H) s.t W ≥ 0, ‖wk‖ = 1, H ≥ 0 (6)

As it appears, and following [6, 15], the minimization (6) is equivalent to the minimization of the following
scale-invariant objective function:

min
W,H

C̄(W,H)
def
= DKL(V |WH) + β S(ΛH) s.t W ≥ 0, H ≥ 0 (7)

where Λ = diag (‖w1‖, . . . , ‖wK‖). Indeed, let (W,H) be a pair of nonnegative matrices and let (W • =
WΛ−1, H• = ΛH be their rescaled equivalents. Then, we have C̄(W,H) = C(W •, H•), and W • satisfies
the constraint ‖w•

k‖ = 1 by construction. As such, one may solve (7), free of scale constraint, and then
rescale its solution to obtain a solution to (6). We will use the notation λk = ‖wk‖ in the rest of the
paper. The next section describes a majorization-minimization (MM) algorithm for the resolution of (7).

4 Majorization-minimization for smooth and convex KL-NMF

We describe an iterative algorithm that updates H given the current iterate of W and then W given the
current iterate of H . Our algorithm employs no heuristics and is derived in a rigorous maximisation-
minimisation framework, which guarantees non-increaseness of the objective function at each iteration.
Sections 4.1 and 4.2 describe the updates of H and W , respectively.

4.1 Update of H given W

4.1.1 Unpenalized case (β = 0)

In the unpenalized case and given W we are left with

min
H

C(H) = DKL(V |WH) =
∑

n

DKL(vn|Whn) s.t H ≥ 0. (8)

Because the objective function separates into independent contributions of hn, n = 1, . . . , N , we are
essentially left with the problem of minimizing of C(hn) = DKL(vn|Whn). This is a standard nonnegative
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linear regression problem which may be handled in a majorization-minimization (MM) framework [12],
based on the iterative minimization of an (easier to minimize) auxiliary majorizing function. The R

K
+ ×

R
K
+ → R+ mapping G(h|h̃) is said to be an auxiliary function to C(h) if and only if 1) ∀h ∈ R

K
+ , C(h) =

G(h|h), and 2) ∀(h, h̃) ∈ R
K
+ ×R

K
+ , C(h) ≤ G(h|h̃). The optimization of C(h) can be replaced by iterative

optimization of G(h|h̃). Indeed, any iterate h(i+1) satisfying G(h(i+1)|h(i)) ≤ G(h(i)|h(i)) produces a
monotone algorithm (i.e., an algorithm which decreases the objective function at every iteration) as we
have C(h(i+1)) ≤ G(h(i+1)|h(i)) ≤ G(h(i)|h(i)) = C(h(i)). As described in [4, 14, 8], an auxiliary function
G(hn|h̃n) to C(hn) can be constructed using Jensen’s inequality thanks to convexity of C(hn), leading to

G(hn|h̃n) =
∑

k

−ψkn log hkn + λkhkn + cst, (9)

where ψkn = h̃kn

∑

f wfkvfn/ṽfn, with ṽfn =
∑

k wfkh̃kn, and cst denotes constant terms w.r.t h̃n. The

minimization of G(hn|h̃n) w.r.t h̃n leads to the standard multiplicative update hkn = ψkn/λk

4.1.2 Penalized case (β > 0)

In the penalized problem, the contribution of hn to C̄(H) = DKL(V |WH) + βS(ΛH), 1 < n < N , can
be written as

C̄(hn) = DKL(vn|Whn) + β L(hn;hn−1, hn+1), (10)

where

L(hn;hn−1, hn+1) =
1

2

∑

k

λ2
k

[

(hk(n+1) − hkn)2 + (hkn − hk(n−1))
2
]

= β
∑

k

λ2
k

[

h2
kn − (hk(n+1) + hk(n−1))hkn)

]

+ cst,

and where cst is a constant of hkn. Using the preceding results, an auxiliary function to the penalized
objective function C̄(hn) is readily obtained as

Gβ(hn|h̃n) = G(hn|h̃n) + β L(hn;hn−1, hn+1). (11)

The minimization of Gβ(hn|h̃n) for 1 < n < N is easily shown to amount to solving an order 2 polynomial
with a single positive root, given by

hkn =

√

b2kn + 4aknψkn − bkn

2akn

, (12)

where akn = 2βλ2
k, bk = λk(1 − βλk(hk(n−1) + hk(n+1))), 1 < n < N . At the border of the chain,

n = {1, N}, the penalty (11) reduces to only one of its two terms and we obtain ak1 = βλ2
k, bk1 =

λk(1 − βλkhk2), and akN = βλ2
k, bkN = λk(1 − βλkhk(N−1)).

In practice, given Ṽ = WH̃ (with coefficients ṽfn on which ψkn depends) computed from current

iterate H̃, the columns hn of H are updated iteratively with replacement for n = 1, . . . , N using (12). Ṽ
is then updated with the new value H̃ = H , and the algorithm proceeds to next iteration.

4.2 Update of W given H

4.2.1 Unpenalized case (β = 0)

In the unpenalized case and given H , we are left with

min
W

C(W ) = DKL(V |WH) s.t W ≥ 0. (13)

which is essentially the same problem as (8). As such a suitable auxiliary function for C(W ) is

G(W |W̃ ) =
∑

fk

−φfk logwfk + σkwfk + cst, (14)

where φfk = w̃fk

∑

n[vfn/ṽfn]hkn and σk =
∑

n hkn, and one obtains the multiplicative update wfk =
φfk/σk.
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4.2.2 Penalized case (β > 0)

In the penalized case (β > 0), we have to solve

min
W

C̄(W ) = DKL(V |WH) +
β

2

∑

k

skλ
2
k s.t W ≥ 0, (15)

where sk = 2S(hk) and where we recall that λk =
∑

f wfk is a function of W . As before, an auxiliary

function to the penalized objective function C̄(W ) is given by

Gβ(W |W̃ ) = G(W |W̃ ) +
β

2

∑

k

skλ
2
k (16)

and the minimization of Gβ(W |W̃ ) is easily shown to amount to solving an order 2 polynomial with a
single positive root, given by

wfk =

√

b2fk + 4afkφfk − bfk

2afk

, (17)

where afk = βsk, bfk = σk + βsk

∑

g 6=f wgk.

5 Application to person/speaker-oriented video structuring

For a variety of TV shows, a structuring scheme centered on show-participants’ occurrences and inter-
ventions is particularly meaningful and useful [25]. This is especially true as the distinction between
onscreen person and speaker is made, where the former refers to a person appearing on the current visual
frame without necessarily speaking, while the latter refers to a person speaking without necessarily being
onscreen. Then, structuring an audiovisual document based on persons/speakers localization essentially
boils down to performing two key sub-tasks: onscreen person spotting and speaker diarization.

Not only are these temporal segmentations useful per se, but also they define various higher-level
structuring units. Indeed, they constitute relevant entry points to the show content, enabling various
navigation modes. For instance, the following: “browse over all interventions of participant Jack, with
Jack speaking and onscreen”, which is typically the type of video segments that would be used to build
a summary of Jack’s interventions. Further, person/speaker temporal segmentations can be easily used
as the basis to deduce a structure such as the one that will be targeted with our evaluation database,
where shots are to be categorized into single participant, multiple participants and overall. They are also
key for social signal processing applications [27].

5.1 Visual Word extraction for onscreen person spotting

Visual person spotting has been considered in a number of studies [22, 7]. The classic approach consists
in detecting faces and using a clustering method on low-level features, the whole process being possibly
guided by a shot change detector and a face tracking module. Features used in this context were extracted
from the face and possibly the clothing regions, including color, texture and SIFT-like features.

In our work we use a bag of visual words representation based on PHOW features, where PHOW
refers to Pyramid Histograms Of visual Words. Note that the term Word in the acronym PHOW is kept
here only to be consistent with the original references [2, 26] where it refers to bins of Histograms of
Orientation Gradients (HOG), and should not to be confused with our usage of visual word relating to
the vocabulary obtained by quantization of the whole set of PHOW features. To avoid confusions, we
will use feature to refer to the low-level attributes (i.e., PHOW features). The features are quantized to
create the vocabulary that is used to extract histograms of word occurrences, which will be referred to
as descriptors.

During the dictionary construction phase, the PHOW features are extracted only from onscreen
persons’ faces and clothing regions as depicted in the top-left corner of Figure 1. These regions are
spotted as follows. First a Viola & Jones face detector [28] is applied on the video frames. Then the
clothing region is detected by creating a rectangular bounding box below the face bounding box, similarly
to [7]. Its width and height are respectively chosen to be twice and 2.5 times the width and height of
the latter. These parameters have been chosen to limit the situations where a part of the background is
included in the clothing bounding box.1

1We will see in Section 6.2 that this constraint does not need to be too rigid, as it is useful for our task to have some
visual words representing the background.
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It is worth mentioning that though color histograms seem to be natural descriptors of the clothing
regions [7, 24], we found them to be less reliable for our task than the descriptors we propose. In fact,
we performed extensive preliminary testing with a number of color histogram variants (testing different
color spaces and quantization steps) and found them to be systematically lacking robustness to the
significant illumination changes accompanying camera viewpoint changes in the talk show videos used
for our evaluation.

PHOW features are extracted on a 8-pixel step grid at 3 scales using bin sizes of 8, 16 and 32-bins [26].
The set of all PHOW features extracted from regions of interest over all frames of the current video where
a face has been detected, are then quantized on 128 bins using the K-means algorithm. All parameters
have been tuned once and for all on a development video that will not be included in the evaluation, to
test for the generalization ability of our system.

The visual vocabulary thus obtained (specifically for the current video) is used to extract histograms
of word counts from every frame of the video. Face detection is no longer used at this stage, that is
PHOW features are extracted over the whole frames, which are thus globally described by the histograms
of visual words, allowing us to cope with the face detector misses, especially on wide shots.

Therefore, we are relying on the NMF algorithm to decompose global frame-based histograms of
words, possibly representing the joint occurrence of two or more persons, into elementary histograms,
each representing a single person. Note that, the process is clearly facilitated by the fact that there are
numerous close-up shots in a TV program video, showing only one person at a time.

As previously explained, only the descriptors need to be adapted to each particular task, the rest of
the temporal segmentation scheme remaining generic.

5.2 Audio descriptor extraction for speaker diarization

For audio analysis the temporal evolution of the local signal characteristics is of great importance. This
has led researchers in the field to largely rely on dynamic modeling approaches, hence the success of
HMMs for audio classification tasks in general, and in particular for speaker diarization tasks where
it is used with Gaussian Mixture Model (GMM) emission probabilities (see for example [19]). In fact,
agglomerative clustering techniques exploiting GMM-HMM structures and Binary Information Criteria
over cepstral features have been extensively used as it has proven successful in solving this problem (for
instance within NIST2 international evaluation campaigns).

HMMs are traditionally used as a decision model in the sense that a one-to-one mapping is determined
between the speakers and the hidden states, and the diarization result is directly deduced by Viterbi
decoding of the observed sequence of low-level features (generally MFCC features) being modeled by the
GMM-HMM. In this work, we follow a different approach, inspired by [16], where we use HMMs only
to build the audio descriptors and leave the speaker modeling and decision taking tasks to the NMF
algorithm. The bottom-left corner of Figure 1 sums up the whole descriptor extraction procedure. The
audio signal is analyzed in short overlapping 20-ms length windows, with a 10-ms hop size, over which 12
Mel Frequency Cepstral Coefficients are extracted (excluding the energy coefficient). A Q-state HMM is
trained in a non-supervised fashion on the sequence of MFCCs, with Q much greater than the expected
number of speakers, using Gaussian state-conditional densities with full covariance matrices. The audio
word vocabulary merely consists of the HMM states found by the Baum-Welch learning algorithm. The
most likely sequence of states is then inferred by Viterbi decoding yielding a state-label for each low-level
frame. Subsequently, state occurrences are counted over 1.5-s length integration windows using a 40-ms
hop size, hence forming the audio descriptors (extracted at a rate of 25 Hz).

6 Experimental validation

Hereafter, a thorough evaluation of a visual-only person-oriented structuring system is first presented on
a challenging database of political debates videos. Subsequently, we propose a second instantiation of our
generic structuring scheme on a speaker diarization problem. We merely aim to make a proof of concept
(on a single video) for the latter, in order to emphasize that our approach can be truly applied to various
tasks, and to show its potential for complex problems, such as speaker diarization, where it exhibits its
capacity to cope with overlapped speech segments, an issue that remains critical for researchers in this
field [31].

2National Institute of Standards and Technology: http://www.nist.gov/index.html
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6.1 Evaluation database

We exploit the Canal9 political debates database for our evaluation [27]. This is a challenging TV show
database meant to serve for research on automatic analysis of social interactions. It covers 4 years of
broadcast. Each broadcast features a moderator and 2 to 4 guests debating a political question. There
are different guests from show to show and both the moderator and the set may vary, though most of
them have been shot in the same studio set.

The database comes with different types of manual annotations. The visual annotations define an
interesting structuring scheme based on a particular taxonomy of the shots relating to camera viewpoints,
which is illustrated in Figure 2. Every shot has been classified into one of three categories, namely “full
group”, “multiple participants” and “personal shot”. Additionally, manual identification of the participant
appearing onscreen is given on “personal shots”.

In order to assess the robustness of our system, we use in our evaluation 10-minute video excerpts
from each of the 41 first shows,3 hence exploiting around 7 hours of video content, involving 189 distinct
persons and totaling 28521 video shots. All system parameters tuning has been done once and for all on a
single development video excerpt (labeled 06-11-22 in the database) leaving 40 videos for the evaluation.
This procedure is meant to show that our system is able to generalize properly despite the limited tuning
effort.

Figure 2: Canal9 annotated shot-types. First shot (upper-left image) is labeled “full group”, next shots:
“multiple participants”, and last 2 shots are “personal shots” labeled with the identity of the onscreen
person.

The database is quite challenging as most camera viewpoints are not stable in time, even across shots
depicting the same set of participants (as can be seen in Figure 2), which is also accompanied with
significant changes in illumination. The “full group” shots are an exception to this, though, as they
repeat invariably over the show duration.

6.2 Visual-based structuring evaluation

Our visual system tries to automatically replicate the Canal9 database visual groundtruth structure in a
non-supervised fashion, hence without trying to assign the given shot labels, or to name the participants
on the personal shots. Rather we aim at jointly clustering the shots of the same category and the
“personal shots” of the same participants. This indeed defines a semantically meaningful person-oriented
structuring scheme since the different shot changes and viewpoints implicitly translate a high-level human
structuring process, that is the one proposed by the TV show director who generally selects for the viewer
the viewpoints that are the most informative about the participants’ interventions and reactions.

6.2.1 Reference system and evaluation procedure

A reference system has been implemented that uses HMMs to model the same sequence of visual-word
histograms exploited by our NMF system. These HMMs employ multivariate Gaussian emission proba-
bilities with full covariance matrices. The number of hidden states is set to Nsp + 2, where Nsp is the
number of current-show participants. Nsp +2 is exactly the number of target categories: one for the “full
group” shots, one for the “multiple participants” shots, and one for each participant’s “personal shots”.

Thus we suppose the number of participants to be known, both for the reference system and our NMF-
based system, which is often acceptable as it can be deduced from textual metadata attached to the TV
content (typically integrated subtitles and/or teletext, see for instance [22]), or given by an operator in
human-assisted systems. Alternatively, model order selection techniques could be employed which has
proven successful especially in the NMF case [23].

3Excluding the pilot show labeled 05-09-21, for which the groundtruth annotation is missing.
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Figure 3: KL-NMF activations, i.e., H coefficients on a short excerpt of the development video with β = 0.
Each subplot represents the temporal sequence of activations for one wk component, 1 ≤ k ≤ K = Nsp+1.
For each component, the image on the right corresponds to the frame where the activation value is
maximum, which is supposed to be a good representative of the content modeled by the corresponding
wk component. Red vertical lines are groundtruth shot boundaries and the other images inside the plot
or around it are key frames of the time-corresponding shots. Green dotted horizontal lines are decision
thresholds. It can be seen that NMF has succeeded in extracting the relevant components and related
activations. Note that the 2nd component is not activated here as the corresponding person does not
appear in any personal shot of this part of the video.

Scoring is performed following NIST speaker diarization evaluation procedure4 [20] which is well
adapted to our problem. It consists in finding a one-to-one mapping between groundtruth segment
labels (here shot types and person identities on “personal shots”) and the labels found automatically for
each segment of the video, such that the total time that is shared between the groundtruth labels and
the corresponding system outputs is maximized over the whole show duration. This is done with the
constraint that each reference label be mapped to at most one system output label. As suggested by the
NIST procedure, 0.25 s time collars are used on the segment-boundaries to forgive potential errors in the
groundtruth.

The evaluation metric is thus the overall shot-type based segmentation error. Note that we are
evaluating our high-level person-oriented structuring task, rather than an on-screen person spotting task.
We unfortunately cannot accurately evaluate the latter since the groundtruth does not indicate who
the onscreen-persons are on the “full group” and “multiple participant” shots. It is worth mentioning,
though, that in our observations the NMF-based systems seem to behave well even for this low-level task.

6.2.2 Analysis of the NMF output

NMF is computed using K = Nsp + 1 components. This choice has been made to let the NMF algorithm
extract one histogram component for each person, plus one for the histogram-descriptor observations
which are dominated by visual words describing the background. “full group” frames are an example of
such observations that are systematically captured by one NMF component as can be seen in Figure 3.
Clearly, this type of shots are easily represented by our method due to their highly stable and recurrent
nature. From this Figure, it can also be noted that there are lower amplitude activations on this same
component, that relate to “multiple participant” shot occurrences. These amplitudes are lower since
fewer elements of the studio background appear on the corresponding tighter shots (and actually even

4We actually use the NIST scoring scripts.
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fewer on “personal shots” causing the current component not to be activated for the latter). In fact,
occurrences of background-related visual words are initially highly present on all observations, which is
why all histogram vectors are normalized (prior to NMF computation) by dividing each row of matrix
V by the row maximum value, so that each descriptor coefficient have full dynamics and the cost is not
dominated by histogram bins with large amplitudes (thus typically bins relating to background visual
words). One might wonder how come such visual words are present in the vocabulary while it was
learned from features extracted in persons’ face and clothing bounding boxes. Recall, though, that we
intentionally did not try to be too rigid on the location of these bounding boxes, hence allowing us to
capture some elements of the background as can be seen in Figure 1. Additionally, background elements
are unintentionally captured on every “false-alarm face detection”, which here is useful to our system,
the key idea being that we mostly want visual words representing the onscreen persons, but also a few
to describe the background.

The desired video structure is obtained by thresholding the activations (see Figure 3). The thresholds
are chosen (once and for all on the development video) to be 0.6 times the maximum activation value
for each component. This yields Nsp + 1 clusters (one cluster per NMF component) covering the Nsp

speakers and the “full group” frames as can be deduced from Figure 3. A frame belongs to a cluster if
its corresponding activation is above the decision threshold. A last cluster is created with all unassigned
segments which are associated to situations where all corresponding activations are below the chosen
threshold. This is always a winning strategy (as will be confirmed by the results on the whole database),
thanks to the behavior of the “background-related” component (top first component in Figure 3), where
as previously explained two levels of activations are observed: one corresponding to the “full group”
shots and the other to the “multiple participant” shots. It is important to note that none of our systems
exploit a shot change detection module. Instead shot boundary detection comes as natural byproduct
of our higher-level structuring process. In fact, both the reference HMM system and our NMF-based
system prove very successful at detecting shot changes.

Figure 4 illustrates the effect of the smoothing on the hkn sequences. The activations become more
stable and easier to threshold, hence potentially creating a positive impact on the system performance
(as will be seen in the next sections).
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Figure 4: Smooth KL-NMF results on video 06-10-04 (visual stream); F = 128, N = 15001 and K = 6.
(a) Cost functions for β = 0 (solid line), β = 0.1 (dashed), β = 1 (dotted). (b-d) First 1000 coefficients
of h1 obtained with the three values of β. One thousand iterations of the unpenalised and penalised
algorithms take respectively 349 and 362 seconds with a MATLAB implementation on a 2.8 GHz Quad-
Core Mac with 8 GB RAM.
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6.2.3 Evaluation results discussion

The overall structuring errors of our NMF-based systems are 16.6%, 14.6% and 26.2%, respectively for
β = 0, 0.1 and 1. The overall performance of the HMM reference system is 23.8%. The statistics of these
scores across all database videos are summed-up in the boxplots of Figure 5.
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Figure 5: Overall visual structuring error in % and box plots of the per-show visual structuring errors in
%. Whiskers extend to the most extreme scores within 1.5 times the inner-quartile range.

NMF-based systems are clearly superior to the reference HMM system with β ∈ {0, 0.1}. The error
can be as low as 4.6% with NMF(0.1) against 6.4% with HMMs, and never exceeds 33.4% for the former
while it may be as high as 58.3% for the latter.

Further, there is a significant improvement with the smooth NMF version (β = 0.1) compared to the
non-smooth “standard” version (β = 0), with -2% in absolute error. This is no longer true if too much
smoothing is imposed, as asserted by the poor results obtained with β = 1, where a too strong smoothing
penalty may have negtively affected the extraction of the relevant basis vectors.

6.3 Speaker diarization system

We have shown in the visual stream segmentation example that very competitive results can be obtained
with a “standard” KL-NMF approach with no specific assumed structure for W (and with the possible
additional smoothness penalty on H). In other examples relying on less structured data, such as audio
segmentation, we observed that the standard NMF approach may fail at extracting single speakers indi-
vidual patterns and may instead extract elementary “parts” of speakers, possibly shared among several
speakers. This is a known property of NMF [13], which can be desirable in some settings, such as coding,
but not in ours. As such, it can be beneficial to assume a particular structure on W that penalizes
the latter effect. In our setting, though multiple speakers occur in many frames, each speaker is also
expected to appear alone in a large proportion of data (corresponding to single speaker segments in the
audio track). Hence, the individual speaker patterns may be retrieved from the data itself and we may
assume the dictionary matrix W to be a linear combination of data points, i.e., W = V L, where L is
a nonnegative N ×K “labeling” matrix. This corresponds to a “convex”-NMF setting, as proposed by
Ding et al. [5], where the authors show that the matrix columns of L tend to become sparse, i.e., the
columns of W are built from a linear combination of a few data points, acting as “centroids”. Ding et
al. [5] consider convex-NMF with the Euclidean distance, but we obtained similar findings with the KL
divergence. It is possible to combine the results of [8], which reports MM updates for convex-NMF with
the KL divergence, with the results of Section 4.2 to produce a MM algorithm for smooth & convex
KL-NMF. Given W = V L, the update of H given by Eq. (12) is unchanged.

A suitable MM update for L, with coefficients lmk, can be obtained as

lmk =

√

b2mk + 4amkφmk − bmk

2amk

, (18)

11

ha
l-0

06
05

88
6,

 v
er

si
on

 1
 - 

4 
Ju

l 2
01

1



where φmk = l̃mk

∑

fn vfm[vfn/ṽfn]hkn, amk = βskδ
2
m, bmk = (σk + βsk

∑

n6=m δnlnk)δm, and δm =
∑

f vfm. It has to be noted that the update of W (i.e., L) in convex NMF is of complexity O(N2K) (per
iteration) while of complexity O(FNK) in standard NMF. Given that in our setting N >> F , convex
NMF induces an important increase of the computational burden.

Figure 6 depicts the activations found by our convex NMF algorithm, with β = 0.5, applied to the
audio-word histograms of our development video. Q = 80 states were used in the HMM exploited for the
histogram descriptor extraction. The result is quite promising as the activations presented in this Figure
are easy to threshold and are found to faithfully represent the groundtruth, in the sense that each NMF
component effectively represents a different speaker with the appropriate activations.

We believe our method has a great potential for this task, chiefly for its ability to cope with overlapped
speech segments as can be observed around time t = 9000 frames, where this situation occurs. Two com-
ponents are then active, that correspond to the two persons who are effectively speaking simultaneously
at that instant.

It is important to note that it was necessary to use both the smoothing and convexity ingredients to
get these results. The non-convex NMF version did not behave well as it tended to decompose a same
speaker on two different components and to represent others with the same component.

Figure 6: Convex NMF output on the audio descriptors. Red vertical lines are groundtruth speaker
segments (where a new segment is created every time there is a change in the set of active speakers,
hence some segments correspond to overlapped speech). Dotted green lines represent decision thresholds
(here 0.4 times the maximum activation value for each component), while continuous green lines are
constants representing all activation-coefficients that are above the threshold. The dotted-line rectangle
highlights a region where overlapped speech occurs and the NMF components of the two corresponding
speakers are activated simultaneously.

7 Conclusions

In this work we have proposed a new generic structuring paradigm whereby, whatever the modality (audio
or video), NMF is applied on histogram descriptors relating to a bag of features representation, to jointly
discover latent patterns, representative of elementary events, and their activations in time. Second, at the
algorithmic level, we have described a majorization-minimization algorithm for novel smooth and convex
variants of KL-NMF. Our approach was shown to give results clearly superior to a reference HMM system
on a person-oriented video structuring application with an unpenalised standard NMF. Smoothing with
a suitable value of the penalty weighting parameter β was shown to improve results even more. We have
also illustrated the relevance of our general approach on a speaker diarization problem, on audio data. In
that case we found our convex (and smooth) variant of KL-NMF to be necessary to obtain satisfactory
results, at the expense of an increased computational burden.
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A first perspective of this work would be a thorough evaluation of our approach on the audio speaker
diarization task. On the methodological side, perspectives concern the automatic evaluation of the
“hyperparameters”, i.e., β and the number of components K. These are common issues of factorizations
models, that may be handled through cross-validation or user feedback, or through Bayesian integration
[3]. An other perspective is the design of online matrix factorization techniques [18] to alleviate the
computational burden incurred in the large scale multimedia setting.
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