A SINGLE-CLASS SVM BASED ALGORITHM FOR COMPUTING AN IDENTIFIABLE NMF

Slim Essid

Institut Telecom / Telecom ParisTech, CNRS-LTCI - 37, rue Dareau - 75014 Paris, France

ABSTRACT

The geometric interpretation of Nonnegative Matrix Factorisation
(NMF) as the problem of determining a convex cone that “well de-
scribes” the data under analysis has been key for addressing a major
shortcoming of the “mainstream” NMF algorithms, that is the non-
identifiability of the factorisation. On the basis of such geometric
motivations, this paper proposes a novel algorithm that makes use
of single-class support vector machines to recover the targeted NMF
components. Not only does this new approach alleviate the NMF ill-
posedness issue, but also it allows for automatically estimating the
number of relevant NMF components, as demonstrated through ex-
periments described in the paper. Moreover, it is readily kernelised
thus opening the way for non-linear factorisations of the data.

Index Terms— nonnegative matrix factorisation, single-class
support vector machines, identifiability.

1. INTRODUCTION

Nonnegative Matrix Factorisation (NMF) is a more and more pop-
ular “data decomposition” technique that has proven successful in
various application domains, for instance audio and music process-
ing [1, 2], audiovisual document structuring [3], or text mining, etc.
By NMF, a set of n positive vector observations {vl, EEEE vn}, with
coefficients vy; > 0, (f,4) € {1,---,F} x {1,--- ,n}, are “ex-
plained” as positive linear combinations of positive basis vectors
(also called dictionary elements). This is accomplished by determin-
ing a low-rank approximation of the matrix V', assembled by stack-
ing the observations column-wise: V' = (vy;), under the form V' ~
W H; where W = (wyy), with wyp > 0V(f, k) € {1,--- , F} x
{1,---, K}, is a rank-K matrix whose columns wy, are the basis
vectors; and where H = (hg;) is a K X n matrix whose positive
elements are the so-called activation coefficients or regressors.

W and H are usually obtained by minimizing a cost function
D(V|W H) (also referred to as measure of fit), that is generally a
divergence [2], while imposing the positivity of W and H, which
is approached as a constrained optimisation problem. This problem
(which is non-convex in (W, H)) is classicly solved for using an
iterative scheme whereby multiplicative update rules are alternately
applied to iterates of W and H [4]. Though satisfactory solutions
can thus be found (especially with a proper choice of measure of
fit), these solutions are not unique: they highly depend on the initial
iterates chosen. In fact, the NMF problem is known to be ill-posed
as the factorization is not identifiable [5, 6].

As pointed out in the latter works, this ill-posedness issue is
best understood through the geometric interpretation of the NMF
problem as the one of determining a simplicial convex cone Cyy =
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Fig. 1. Geometric interpretation of NMF in R?. Left panel depicts original data
points, while right panel shows the same data after normalisation to unit-length. There
exists many simplicial cones Cyr containing the observations, the vertices wy, of which

are given in blue dashed lines, the smallest is depicted in red continuous lines.

{25:1 AWE Ak > 0}, hence generated by the columns of W

(called vertices of the cone), that contains the data points v;. As can
be seen in Figure 1, the identifiability problem is not confined to the
indeterminacy of the basis-vectors scale, which is easily alleviated
by requiring these vectors to be unit-length, i.e. ||wi|| = 1, as will
be assumed hereafter. Rather, the main difficulty is that without any
further constraints, there visibly often exists many possible cones
containing the data points v;.

In order for the columns of W to be uniquely defined, Klingen-
berg et al. suggest to seek the smallest cone Cw containing the (nor-
malised) data points v; [6], where the expression “smallest cone”
implicitly refers to the cone with minimum aperture (the aperture
being defined as the maximum angle between two generators of the
cone), which defines the conic hull of the data. This approach is
shown to be successful in revealing the “true” data generation pro-
cess, as soon as some observations are close enough to the vertices
of the generating cone, which is likely to happen especially when the
observations are sparse combinations of the underlying components.
The smallest cone C/V\V is found in [6] by the Extreme Vector Algo-
rithm (EVA) which (iteratively) seeks the cone whose generators (to
be selected from V' columns), are the “furthest away one from an-
other in angular sense”.

In this work, we propose an alternative new algorithm for com-
puting an identifiable NMF, based on the single-class SVM tech-
nique, with numerous advantages over the EVA algorithm, notably
that 1) our proposal can be easily kernelised to allow for non-linear
factorisations of the data matrix, and ii) the number of components
K, which is often a critical parameter not know in advance, can be
automatically determined from the data. This will become clear in
Section 3 after the former technique is recalled in Section 2. Our
approach is experimentally validated on two data configurations in
Section 4, before we suggest conclusions and an outlook in Sec-
tion 5.

2. SINGLE-CLASS SVM

Single-class support vector machines (SC-SVM) is a nonparametric
density-support estimation technique that relies on a kernel-based
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“maximum-margin style” set-up [7, chap. 8]. Here we briefly recall
its principle and properties of interest for the computation of NMF.

Let X = {x1,---,zn} be a set of n training vectors in an
input space X (a subset of R¥) and ® : X — H a map into a
feature space H where the inner product is given through a kernel
k(z,y) = (®(z), ®(y)), (z,y) € RF x RF. The single-class SVM
technique consists in determining a function f, describing a hyper-
plane P in the feature space, whose sign is positive in a region, as
small as possible, that captures most of the data. This is achieved
by determining the hyperplane P : (a, ®(x)) — p, defined by the
normal vector a € H, and the offset p > 0, that separates the fea-
ture vectors from the origin with maximum margin and letting fs to
be fs(z) = sgn ({a, ®(x)) — p), with sgn the sign function, which
indicates whether a feature vector is on the positive or negative side
of the hyperplane.

To this end one may solve the following quadratic program:
mingep 3llal[* + 5 2 & — oot (@, @(x)) > p— &y & >
0, p > 0, where & are slack variables introduced to account for
outliers, 1 < ¢ < n, and v is a positive penalization parameter used
to allow for a trade-off, between margin maximisation and training
errors, similarly to the usual bi-class ¥-SVM set-up [7, chap. 8]. The
solution is given by: fs(x) = sgn (3], curi(zi, x) — p), where
ay; are Lagrange multipliers, verifying 0 < o; < -, most of which
are zero. Vectors x; with 0 < a; < ﬁ are the margin support
vectors (that lie on P), those with o; = ﬁ are non-margin support
vectors or outliers, and the remaining vectors of X" have zero valued
Lagrange multipliers.

Parameter v is full of meaning and plays a central role. In fact,
it is easily proven (using the KKT conditions) [7, app. A.2] that it
is both an upper bound on the fraction of margin errors and a lower
bound on the fraction of support vectors. Moreover, v is asymptoti-
cally equal to both the fraction of outliers and the number of support
vectors, under mild conditions on the form of the data distribution
and the kernel [7, chap. 8].

Finally, it is worth mentioning that the above optimisation can
be solved efficiently using one of the variants of the so-called subset
selection methods [7, chap. 10], making it manageable on very large
data sets.

Suppose, without loss of generality that the kernel x(z,y) is
such that x(x, z) = ||®(x)||* = 1, Vo € R”. In fact, this is already
true for radial kernels, that is kernels that only depend on = — y,
and can be otherwise obtained, merely by transforming the original
kernel x(z,y) into ' (z,y) = £(zy) Y(z,y) € RE x RE.

Ve(x)s(y,y)’

Consequently all the (non-zero norm) data points in the feature space
lie on a unit hypersphere as shown in Figure 2.

Fig. 2. Single-class support vector machine. Data points which lie on the hyperplane
are the margin support vectors. With normalised kernels (right side) all points in the
feature space are located on a unit hypersphere.
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3. COMPUTING NMF USING SC-SVM

We start by describing the procedure to find the basis-vector matrix
W before we explain how the weights in H can be recovered. Subse-
quently, we focus on a kernel-based version of our NMF algorithm.

3.1. Finding W

Following [6] we determine W by seeking the conic hull of the data,
though using a completely different procedure. Our approach is mo-
tivated by the fact that since the observations are assumed to lie on
a unit hypersphere, seeking the smallest cone containing the data is
equivalent to looking for the hyperplane that separates the data from
the origin with maximum margin, that is exactly the SC-SVM solu-
tion, as can be seen in Figure 2. In this Figure, two different cones
are shown that correspond to two different SVM solutions, that is the
hyperplanes shown respectively in dashed and continuous lines. The
different solutions typically correspond to distinct v values. There-
fore, in order to obtain W, we apply the v-SC-SVM algorithm on the
data to select the margin support vectors as basis vectors wy, since
the former are then the vertices of 5‘; A nice consequence of this, is
that the number of components K is thus automatically determined
and is equal to the number of margin support vectors.

This approach has several advantages compared to the one pro-
posed in [6] and more generally to “standard” NMF techniques,
namely:

- the proposed algorithm can be straightforwardly kernelised
(as will be shown hereafter), hence allowing one to achieve non-
linear factorisations of the data, and to incorporate in the kernel func-
tion prior knowledge on the data invariances and adequate similarity
measures;

- the choice of K (the rank of W), often not known a priori but to
be determined from the data, is not required, rather, one needs to
choose a proper v, that can be interpreted either as an upper-bound
on the expected fraction of outliers in the set V = {v1,- -+ , v, } or
a lower-bound on K;

- in marked contrast to the EVA algorithm whose time complexity
is O(K*), our approach is computationally efficient thanks to the
existence of various light-weight algorithms for solving the SVM
optimisation problems, for instance variants of [7], that are readily
available in many widely-used toolboxes, yielding complexities that
can be as low as O(n);

- the algorithm can be straightforwardly adapted to online process-
ing, where the data is collected on the fly, building upon previous
works on online SVM techniques;

- finally, our algorithm is applicable on any data configuration, as it
does not require the restrictive assumption that the observations must
satisfy the extreme data property [6], thanks to its ability to exclude
some data points that can be considered as outliers.

3.2. Computing H

Once W has been determined, H can be found by solving a clas-
sic linear regression problem with positivity constraints. In the case
where the rank of V' is actually K, H can be found merely by solv-
ing the linear system V' = W H. The h; are then guaranteed to be
positive for non-outlier data points (which lie inside the cone C/‘;/).

In general one seeks partial-rank factorisations (K < F') for
which the solutions to v; = W h; are not unique, and not guaranteed
to be positive. Therefore, we determine H by solving the nonnega-
tive least-squares problem [8]: miny, C'(hi) = ||Jv; — Whi||2, s.t.
hii >0, ke{l,--- K}, forl <i<n.



Solving for H in a regression setting is quite advantageous as it
allows one to straightforwardly introduce further constraints on the
solution. For instance more sparsity on H can be enforced by con-
sidering shrinkage methods, typically by introducing L1 penalties in
the optimisation.

3.3. Kernel-based NMF

We now show how our NMF algorithm can be kernelised. Our pro-
posal is not the first instance of kernel-NMF which has been previ-
ously introduced in a convex NMF setting [9]. However, the latter
still has the same defects that other NMF algorithms have (particu-
larly ill-posedness).

Kernel-based NMF seeks a positive factorisation of transformed
observations: ®(V) ~ W H, with the constraint that W and H
coordinates be nonnegative, where we re-use the notations of Sec-
tion 2 taking X = V. The basis vectors wy, are here elements of
the feature space #, which are merely found in our approach us-
ing the kernel-based version of the single-class SVM, similarly to
the linear case. Thus, W contains the ®-transformed support vec-
tors: W = [ ®(vo,), ... ,®(voy) |, where vy, are the support
vectors.

H is determined by solving the problem miny, Cs(h;) =
H|®(vi) = Whil[3, st heg > 0,k € {1,--+ K}, for1 <i<n.
Using the kernel trick it can be easily shown that:

K
%E:i) = ;hlif‘ﬁ(vkvvl) - ’i(vi’vl) M
9*Cao(hi) _
by = o) v

Therefore, the Hessian matrix is exactly the Gram matrix which
is positive definite for positive definite kernels. As a consequence,
the previous optimisation problem is convex for any such kernels
and can be solved using state-of-the-art optimisation techniques.

4. EXPERIMENTAL VALIDATION

In the following we validate the proposed algorithm by applying to
simulated image and audio analysis problems. We start with an ex-
ample inspired by one initially presented in [6].

4.1. An image analysis example

A set of gray-level images of size 32 x 32 is generated by linear
combination of 3 component-images that are black circles on a very
light background (almost white, but actually low-amplitude random
noise). The components are depicted in Figure 3 together with an
example of a synthesised image.

O o

Fig. 3. Generating basis vectors with an observation example.

The images are represented as 1024-coefficient column vectors.
The basis vectors are stacked in a 1024 x 3 matrix B. 1500 obser-
vations are formed in a 1024 x 1500 matrix V as V = B(C, with
coefficients of C' drawn uniformly in the range [0, 1].

2055

The goal is to recover the generating “basis images” from the set
of observations. To this end, single-class SVM based NMF, with v =
0.001, is applied on the data in two variations: i) using V' = [BC, B]
and ii) using V' = BC, to study the behavior of the algorithm when
the targeted components are not among the observations.

The basis vectors found by the algorithm in each case are de-
picted in Figure 4. First, it is observed that when the basis vectors are
among the data they are easily recovered by the algorithm. Second,
when they are not necessarily among the data (i.e. when V' = BC),
the vectors selected by the algorithm are good approximations to
them as can be seen in the second row of images of Figure 4, despite
the fact that the activations (drawn uniformly) are not particularly
sparse. If a simple post-processing were applied that would consist
in “zeroing” all pixels whose values were below a low threshold, the
result would be again perfect.

o

O o
o

Fig. 4. Basis vectors found by v-SC-SVM, with v = 0.001. Top row: using
V = [BC, B]. Bottom row: V = BC.

Thus, this example is a good illustration of configurations where
the fact that, in geometric approaches like ours, the “components”
wy, are selected among the observations (given that they are support
vectors), may not be too restrictive as soon as some data points are
close to the basis vectors to be recovered. This is actually often
verified for numerous applications, especially when the activations
are sparse, or when the goal behind the use of NMF is to perform
some form of (soft) clustering, which is typically the target of convex
NMF approaches [9].

We now look at the tuning of the v parameter. Figure 5 displays
the behavior of the number of basis vectors selected (the margin sup-
port vectors SV) as a function of vn (recall that it is a lower bound on
the number of SVs), compared to the total number of support vectors
(including outliers). It is visible that the SC-SVM NMF algorithm
always finds the appropriate number of components. When vn in-
creases, outliers are created but the number of components remains
fixed.

Number of support vectors as a function of v

1aF T T T T T /t,
All SVs.

12f | —=— Margin SVs

Fig. 5. Number of support vectors and basis vectors (that is margin support vectors)

as a function of vn with n = 1500 observations.



4.2. An audio analysis example

We now turn to a synthetic audio example where we test the SV-
NMEF algorithm (that is our proposal) for a musical note transcription
task. The synthetic audio piece to be analyzed (the spectrogram of
which is given in Figure 6) is assembled from harmonic sinusoidal
mixtures, each simulating a musical note m according to: sm, () =
25:1 S cos(2mpfmt), with P = 10 partials, f,, being the funda-
mental frequency of note m and a,, the amplitude of the first partial
which is decreased linearly on the following ones. The excerpt is
composed as follows: a C major chord is first built progressively by
adding a new note every second, following the sequence C5, C5+ES,
C5+E5+GS5, C5+E5+G5+C6; then a much shorter single-note se-
quence (simulating an arpeggio) is added that consists of C5, ES, G5,
C6, each played for 1/8 second, creating the situation where some
observations are close to the targeted components. The signal to be
analyzed is created according to s(t) = >, sm(t)rm(t) + b(t),
where 7., (t) is a rectangular window delimiting the activations of
note m across time (see Figure 6), and b(¢) is a standard Gaussian
noise whose power is calibrated to simulate a Signal to Noise Ratio
(SNR) of 6dB. The amplitudes are chosen arbitrarily in the range
[0.5,0.9] as show in Figure 6. The sampling frequency is 16kHz.
The goal is to obtain a (non-supervised) transcription of this audio
signal into notes using NMF. The task is not really straightforward
due to the presence of noise and the fact that the partials of the cho-
sen notes overlap in frequency (especially between C5 and C6).
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Fig. 6. Top panel: Synthetic audio signal. Red dashed vertical lines indicate ground-
truth note onsets. Blue continuous vertical lines indicate the basis vectors that are se-
lected by the algorithm. Bottom panel: Original note activations (a,, values) in blue,
along with rescaled estimated activations in red. Decision threshold in green.

The power spectrogram of the signal is computed using 1024-
sample length windows with a hopsize of 1000 samples and ma-
trix V' is formed by stacking the successive local observations of
the power spectrum column-wise. SV-NMF is then executed on V'
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with the parameter v being fixed to an arbitrarily small values, here
v = 1075 as no outliers are really expected to be observed.

The basis vectors found by the algorithm are highlighted in Fig-
ure 6 by continuous (blue) vertical lines (one nearby the origin of
time, and three more at the end). As can be seen, SV-NMF has suc-
ceeded at automatically determining the relevant number of gener-
ating notes (K =4). Additionally, the basis vectors selected are ac-
tually also relevant as they have been selected from segments where
only one note is played at a time, and each one corresponds to a
different note.

The estimated activations are shown in red in Figure 6 (after
global rescaling to match the maximum amplitude of the original ac-
tivations, for visual convenience). The automatic transcription of the
signal is obtained merely by thresholding the obtained activations,
which here presents no difficulty, yielding perfect transcription re-
sults.

5. CONCLUSIONS AND FUTURE WORK

A new geometric NMF algorithm, that makes use of the single-class
SVM technique, has been introduced. The new algorithm combines
a number of ideal features, notably that it is readily kernelised, it is
able to automatically determine the number of relevant components,
it is computationally efficient, and amenable to online processing
scenarios.

Future work will consider real-world applications for this algo-
rithm making use of its kernel-based version that has a great potential
for incorporating prior knowledge on the data under analysis.
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