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Abstract
This presentation will very briefly introduce
the matrix co-factorisation paradigm, especially
nonnegative matrix co-factorisation and discuss
its applications to music analysis, in particular,
multiview audio source separation in music.

1. Introduction
Matrix co-factorisation methods perform two (or more)
factorisations in parallel, which are linked in a particu-
lar way. They have proven useful for various multiview
data analysis settings, that is settings where observations
are obtained from multiple sensors or interfaces, each sen-
sor/interface contributing a particular view of the data. In-
stances of this include multichannel audio data, as acquired
by microphone arrays, or more generally, multimodal data,
i.e. heterogeneous data that involves two or more modali-
ties such as the audio, textual or visual modalities in video
recordings or web content.

In particular, these methods are well suited to the analy-
sis of music as it is by essence a multimodal artefact that
can be sensed in a variety of ways: music is materialized
in the head of a composer, or a trained musician reading
a musical-score; it is translated into sound and motion in
a musician’s gestures or a dancer’s movements and steps;
it becomes visual art when it is illustrated by disc cover
designs or transformed into an audiovisual production; not
to mention its textual dimension that encapsulates not only
the lyrics (in sung music) and editorial meta-data, but also
social web content such as user-tags, reviews, ratings, etc.

This presentation will very briefly introduce the matrix co-
factorisation paradigm, discussing its applications to music
analysis, especially multiview audio source separation in
music. The attention will be on nonnegative matrix co-
factorisation, which offers improved interpretability and
has proven its superiority for numerous musical audio anal-
ysis tasks.
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spondence to: Slim Essid <slim.essid@telecom-paristech.fr>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

2. Co-factorisation methods
Matrix factorisation techniques, especially their nonnega-
tive variants (Lee & Seung, 1999), can be profitably used to
extract meaningful representations for the data being anal-
ysed. When dealing with multichannel data—i.e. with
data views of the same nature (e.g. multichannel audio
or images)—observations from multiple channels may be
assembled in multi-way arrays, i.e. tensors, before being
modelled by tensor factorisation methods (Kolda & Bader,
2009; Cichocki et al., 2008; Yilmaz & Cemgil, 2010).

In contrast to the previous setting, data from different
modalities usually live in feature spaces of completely dif-
ferent topology and dimensionality (think of audio as op-
posed to images of a video), preventing the possibility of
“naturally” representing them by the same tensor. In this
case, one may resort to co-factorisation techniques, that
is techniques performing two (or more) factorisations in
parallel, which are linked in a particular way. Because of
the different nature of the modalities, this link has usually
to be characterized through dependencies between the ex-
pansion coefficients, a.k.a activations, in cross-modal cor-
respondence, and unlikely through dependencies between
dictionary elements of different modalities.

Assuming that appropriate nonnegative features have been
extracted at the same rate from the two modalities be-
ing analysed1—say the audio and images of a video—so
that two observation matrices V1 ∈ RK1×N

+ and V2 ∈
RK2×N

+ , assembled by stacking the observations column-
wise, are available for the audio and visual modalities, one
may seek a model (W1,W2,H) such that:

V1 ≈W1H

V2 ≈W2H

W1 ≥ 0, W2 ≥ 0, H ≥ 0 ;

(1)

in such a way that the activations in H be the same for both
modalities. This is referred to as hard co-factorisation, an
approach that has been followed in a number of works (see
e.g. Fitzgerald et al. (2009); Yoo & Choi (2011); Yokoya
et al. (2012)). Clearly, such an approach is limited in that

1To simplify, we consider the case of two modalities, but
clearly the methods described here can be straightforwardly gen-
eralized to more than two data views by considering the relevant
pairwise associations.
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it does not account for possible local discrepancies across
the modalities. This happens for example, in video analy-
sis scenarios, when there is a mismatch between the audio
and the images information, say because of a visual occlu-
sion. Our soft co-factorisation model (Seichepine et al.,
2014) stems from that limitation: it merely encourages the
activations corresponding to each modality to be close, as
opposed to equal, according to:


V1 ≈W1H1

V2 ≈W2H2

H1 ≈ H2

W1 ≥ 0, W2 ≥ 0, H1 ≥ 0, H2 ≥ 0.

(2)

The model (2) is estimated by solving the following opti-
mization problem:

min
θ

Cc(θ) ; θ
∆
= (W1,H1,W2,H2)

W1 ≥ 0, W2 ≥ 0, H1 ≥ 0, H2 ≥ 0 ;
(3)

Cc(θ)
∆
=D1(V1 |W1H1) + γD2(V2 |W2H2)

+ δP (H1,H2) ; (4)

where:

• D1(. | .) and D2(. | .) are the measures of fit respec-
tively relating to the first and second views; note that
they may be chosen to be different divergences, each
well suited to the corresponding feature space;

• P (., .) is a penalty on the difference between (prop-
erly rescaled) activation values occurring at the same
instant; it can for instance be chosen to be the `1 or
`2-norm of the difference between the rescaled activa-
tions;

• γ and δ are regularization parameters controlling, re-
spectively, the relative importance of each modality
and the coupling penalty.

We have devised stable algorithms to solve this problem
for different choices of coupling penalties and measures
of fit, as well as temporal smoothing penalties, using the
majorisation-minimisation approach. For more details, the
interested reader is referred to (Seichepine et al., 2014).

3. Applications
The soft co-factorisation scheme has proven effective for
various tasks (Seichepine et al., 2014; 2013; Sedighin
et al., 2017; Parekh et al., 2017a;b) and is believed to hold
promise for various multiview music analysis tasks, for in-
stance when considering jointly:

• Audio and visuals in music video analysis tasks, es-
pecially in live performance videos, where the visual
information can be very valuable for tasks as diverse
as musical instrument recognition, source separation,
melody/singing voice extraction, beat and downbeat
estimation, etc. In fact, we have successfully applied
soft matrix co-factorisation to multichannel (Seichep-
ine et al., 2014) and multimodal musical audio source
separation (Parekh et al., 2017a;b). In the last two
works, the task considered is the separation of mu-
sical instrument sources in multimodal recordings of
string quartets (Marchini et al., 2014), including au-
dio, visual and motion-capture data. Audio source
separation in this type of ensembles is known to be
very challenging, hence leveraging motion features
obtained from visual data turns out to be very useful
for the task, based on the assumption that a set of au-
dio activations would be “similar” to the velocity of
sound-producing motion (Parekh et al., 2017b).

• Crowd data and music, possibly represented by au-
dio, scores and/or lyrics, for autotagging or music rec-
ommendation tasks, where possibly item–user matri-
ces could be processed jointly with item–musical fea-
tures matrices.

• User data and music, as part of relevance feed-
back schemes, where the feedback could be either
explicit, i.e. textual, or implicit, e.g. physiologi-
cal, for example in settings where the user would
be equipped with ECG (electrocarodiographic), EMG
(electromyographic) and/or EEG (electroencephalo-
graphic) sensors as they listen to the music.

4. Conclusion
Matrix co-factorisation proves to be a versatile multi-view
data analysis technique that encompasses a diversity of
highly expressive models. In particular, simple regulari-
sation schemes can be deployed for the analysis of multi-
modal data so as to take advantage of the dependencies that
exist between the data views being analysed. Our soft co-
factorisation scheme goes along this line by flexibly bind-
ing together the related factors across concurrent modali-
ties. It can additionally accommodate local regularity re-
quirements when processing temporal sequences, through
smoothing penalties.
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