
MOTION INFORMED AUDIO SOURCE SEPARATION 

Sanjeel Parekh*t Stirn Essid* Alexey Ozerovt Ngoc Q. K. Duongt Patrick Perezt Gael Richard* 

* LTCI, Telecom ParisTech, Universite Paris-Saclay, 75013, Paris, France 
t Technicolor, 975 avenue des Champs Blancs, CS 17616,35576 Cesson Sevigne, France 

ABSTRACT 

In this paper we tackle the problem of single channel audio source 
separation driven by descriptors of the sounding object's motion. 
As opposed to previous approach es, motion is included as a soft­
coupling constraint within the non negative matrix factorization 
framework. The proposed method is applied to a multi modal dataset 
of instruments in string quartet performance recordings where bow 
motion information is used for separation of string instruments. We 
show that the approach offers better source separation result than 
an audio-based baseline and the state-of-the-art multimodal-based 
approaches on these very challenging music mixtures. 

Index Terms- audio source separation, non negative matrix 
factorization, motion, multi modal analysis 

1. INTRODUCTION 

Different aspects of an event occuring in the physical world can be 
captured using different sensors. The information obtained from one 
sensor, referred to as a modality, can then be used to disambiguate 
noisy information in the other, based on the correlations that exist be­
tween the two. In this context, consider the scene of a busy street or 
a music concert: what we hear in these scenarios is a mix of sounds 
coming from multiple sources. However, information received from 
the visual system in terms of movement of these sources over time 
is very useful for decomposing and associating them with their re­
spective audio streams [1]. Indeed, often, there exists a corrreiation 
between sounds and the motion responsible for the production of 
those sounds. Thus, machines too could use joint analysis of audio 
and motion to perform computational tasks in either of the modali­
ties which are otherwise difficult. In this paper we are interested in 
audio and motion modalities. Specifically, we demonstrate how in­
formation from sound-producing motion can be used to perform the 
challenging task of single channel audio source separation. 

Several approaches have been proposed for monaural source 
separation in the uni modal case, i.e., methods using only au­
dio [2- 5] , in which non negative matrix factorization (NMF) has 
been the most popular one. Typically, source separation in the NMF 
framework is performed in a supervised manner [2], where mag­
nitude or power spectrogram of an audio mixture is factorized into 
nonegative spectral patterns and their activations. In the training 
phase, spectral patterns are Iearnt over clean source examples and 
then factorization is performed over test examples while keeping the 
Iearnt spectral patterns fixed. In the last few years, several methods 
have been proposed to group together appropriate spectral patterns 
for source estimation without the need for a dictionary learning step. 
Spiertz el al. [6] proposed a promising and generic basis vector clus­
tering approach using Mel-spectra. Subsequently methods based on 
shifted-NMF, inspired by western music theory and linear predic­
tive coding were proposed [7,8]. While the latter has been shown 

978-1-5090-4117-6/17/$31.00 ©2017 IEEE 6 

to work weil with harmonic sounds, its applicabi lity to percussive 
sounds will be limited. 

In the single channel case it is possible to improve system perfor­
mance and avoid the spectral pattern learning phase by incorporating 
auxiliary information ab out the sources. The inclusion of side infor­
mation to guide source separation has been explored within task­
specific scenarios such as text informed separation for speech [9] or 
score-informed separation for classical music [10]. Recently, there 
has also been much interest in user-assisted source separation where 
the side information is obtained by asking the user to hum, speak or 
provide time-frequency annotations [11- 13]. 

Another trend is to guide audio source separation using video. 
In such cases, information about motion is extracted from the video 
images. One of the first works was that of Fisher el ai. [14] who uti­
lize mutual information (MI) to Iearn a joint audio-visual subspace. 
The Parzen window estimation for MI computation is complex and 
requires determining many parameters. Another technique which 
aims to extract audio-visual (AV) independent components [15] does 
not work weil with dynamic scenes . Later, work by Barzeley et 
al. [16] considered onset coincidence to identify AV objects and sub­
sequently perform source separation. They dileanate several limita­
tions of their work, including: setting multiple parameters for opti­
mal performance on each example and possible performance degra­
dation in dense audio environments. Application of AV source sep­
aration work using sparse representations [17] is li mi ted due to their 
method's dependence on active-alone regions to Iearn source char­
acteristics. Also, they assurne that all the audio sources are seen 
on-screen which is not always realistic. Arecent work proposes to 
perform AV source separation and association for music videos using 
score information [18]. Some prior work on AV speech separation 
has also been carried out [19,20], primary drawbacks being the large 
number of parameters and hardware requirements. 

Thus, in thi s work we improve upon severallimitations of the 
earlier methods. With the exception of a recently published study 
[21], to the best of our knowledge no previous work has incorpo­
rated motion into the NMF-based source separation systems. More­
over, as we demonstrate in Section 3, the applicability of methods 
proposed in [21] is limited. Our approach utilizes motion informa­
tion within the NMF parameter estimation procedure through soft 
coupling rat her than aseparate step after factorization. This not only 
preserves f1exibility and efficiency of the NMF system, but unlike 
previous motion-based approaches, significantly reduces the num­
ber of parameters to tune for optimal performance (to effectively 
just one). Particularly, we show that in highly non-stationary scenar­
ios, information from motion related to the causes of sound vibration 
from each source can be very useful for source separation. This is 
demonstrated through the application of the proposed method to mu­
sical instrument source separation in string trios using bow motion 
information. To the best of our knowledge this paper describes the 
first study to use motion capture data for audio source separation. 
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The rest of the paper is organized as folIows: In Section 2 we dis­
cuss our approach followed by the experimental validation in Section 
3. Finally we conclude with a mention of ongoing and future work 
in Section 4. 

2. PROPOSED APPROACH 

Given a linear instantaneous mixture of J sources 

J 

x(t) = I>j(t) , (1) 
j = l 

the goal of source separation is to obtain an estimate for each of the 
J sources, S j . 

Within the NMF framework this is done by obtaining a low­
rank factorization for the mixture magnitude or power spectrogram 
Va E lR~ X N consisting of F frequency bins and N short-time 
Fourier transform (STFT) frames, such that, 

(2) 

where W a = (Wa,jk)f ,k E lR~ X K and Ha (ha ,knh ,n E 
lR~XN are interpreted as the nonnegative audio spectral patterns and 
their activation matrices respectively. Here K is the total number of 
spectral patterns. Matrices W a and H a can be estimated sequen­
tially with multiplicative updates obtained by minimizing a diver­
gence cost function [22]. 

2.1. Motion Informed Source Separation 

We assume that we now have information about the causes of sound 
vibration of each source in the form of motion activation matrices 

K m- xN K N 
H m i E lR+ J , vertically stacked into a matrix H m E lR+ m X . 

[
H m1 ] J 

H m = : ,whereKm = LKm i · 

H ) = 1 
mJ 

(3) 

Following Seichepine el al. 's work [23], our central idea is to couple 
H m with the audio activations, i.e., to factorize V a such that H a is 
"similar" to H m . With such a constraint, the audio activations for 
each source H aj would automatically be coupled with their counter­
parts in the motion modality H m j and we would obtain basis vectors 
clustered into audio sources. For this purpose, we propose to solve 
the following optimization problem with respect to W a, H a and S: 

minimize [DKL(VaI W aH a) + a ll AaH a - SHml1 1 
W a ,H a,S 

+ ß t t(ha, kn - ha'k(n_ 1»)2] 
k=l n=2 

(4) 

subject to W a 2: 0, Ha 2: 0. 

In equation (4), the first term is the standard generalized Kullback­
Leibier (KL) divergence cost function such that DKL(xIY) = 

x log(x/ y) - x + y. The second term enforces "similarity" between 
audio and motion activations, up to a scaling diagonal matrix S, by 
penalizing their difference with the f\ norm. The last term is intro­
duced to ensure .e2 temporal smoothness of the audio activations. 
The inftuence of each of the last two terms on the overall cost func­
tion is controlled by the hyperparameters a and ß, repectively. Aa is 
a diagonal matrix with k t h diagonal coefficient Aa,k = ~f Wa,fk. 
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The cost function is minimized using a block coordinate 
majorization-minimization (MM) algorithm [23] where W a and 
Ha are updated sequentially. Our formulation is a simplified 
variant of the previously proposed soft non-negative matrix co­
factorization (sNMcF) algorithm [23] , wherein two modalities are 
factori zed jointly with a penalty term soft-coupling their activa­
tions. However, here we do not factorize the second modality (i.e., 
the motion modality) and its activations are held constant in the 
update procedure. Note that, from the moders perspective, Ha 
and H m need not contain the same number of components. So 
if K =je Km, then we can readily ignore some components when 
coupling. However, for this work we maintain K = Km. The 
reader is referred to [23] for details about the algorithm. Recon­
struction is done by performing pointwise multiplication between 
soft mask, Fj = (W aj H aj ). / (WaH a) and mixture STFT and fi­
nally taking its inverse. Here W aj and Hai represent the estimated 

spectral patterns and activations corresponding to the lh source, 
respecti vel y. 

In the following section, we will discuss the procedure for ob­
taining motion activation matrices H mj for each source. 
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Fig. 1: An example of bow inclination and velocity data for violino 

2.2. Motion Modality Representation 

While for audio, the classic magnitude spectrogram representation 
is used, motion information must be processed to obtain a represen­
tation that can be coupled with audio activations. The question now 
being: What motion features will be useful? 

We work with a multi modal dataset of instruments in string quar­
tet performance recordings. Thus, the motion information exists in 
the form of tracking data (motion capture or MoCap data ) acquired 
by sensors placed on each instrument and the bow [24]. Now we 
immediately recognize that information about "where" and "how" 
strongly the sound-producing object is excited will be readily con­
veyed by bowing motion velocity and orientation in time. In this 
light, we choose to use bow inclination (in degrees) and bow veloc­
ity (cmls) as features (as shown in Fig. I) , wh ich can be easily com­
puted from the raw motion capture data described in [24, 25] . These 
descriptors have been pre-computed and provided with the dataset. 
The bow inclination is defined as the angle between the instrument 
plane and the bow. The bow velocity is the time derivative of the 
bow transversal position. The motion activation matrix, H mj for 
j E (1 , J) can then be built using the following simple strategy: 



1. In the first step, we quantize the bow inclination for each in­
strument into 4 bins based on the maximum and minimum 
inclination values. A binary encoded matrix of size 4 x N is 
then created where the row corresponding to the active bin is 
set to 1 and the rest to 0 for each frame. 

2. With such a simple descriptor we al ready have information 
about the active string within each time window. We then do a 
pointwise multiplication of each component with the absolute 
value of the bow velocity. Intuitively, this gives us informa­
tion about string excitation. Fig. 2 visualizes the effectiveness 
of this step, where Fig. 2a depicts the quantized bow inclina­
tion vector components, overlapped for two sources. Notice, 
especially in the third subplot, that there are several places 
where the components overlap and the contrast between the 
motion of these sources is difficult to see. However, on ce it is 
multiplied with the bow velocity (in Fig. 2b) the differences 
are much more visible. 

3. EXPERIMENTAL VALIDATION 

We conduct several tests over a set of challenging mixtures to judge 
the performance of the proposed approach. 

3.1. Dataset 

We use the publicly available Ensemble Expressive Performance 
(EEP) dataset 1 [26]. This dataset contains 23 multi modal recordings 
of string quartet performances (including both ensemble and solo). 
These recordings are divided into 5 excerpts from Beethoven's Con­
certo N.4, Op. 18. Four of these, labeled from PI to P4 contain 
solo performances, where each instrument plays its own part in the 
piece. We use these solo recordings to create mixtures for source 
separation. Note that due to unavailability of microphone recording 
for the solo performance of the second violin in the quartet we con­
sider mixtures of three sources, namely: Violin (vln), Viola (vIa) and 
Cello (ceI). The acquired multi modal data consists of audio tracks 
and motion capture for each musician's instrument performance. 

3.2. Experimental Setup 

For evaluating the performance of the proposed methods in different 
scenarios we consider the following three different mixture sets: 

1. Set 1 - 4 trios of violin, viola and cello, one for each piece 
denoted by PI, P2, P3, P4 in Table l. 

2. Set 2 - 6 two-source combinations of the three instruments 
for pieces PI - P2. 

3. Set 3 - 3 two-source combinations of the same instrument 
from different pieces, e.g., a mix of 2 violins from PI and P2. 

Our approach is compared with the following baseline and state­
of-the-art methods: 

1. Mel NMF [6] - This is a uni modal approach where basis vec­
tors learned from the mixture are clustered based on the sim­
ilarity of their mel-spectra. We take help of the example code 
provided online for implementation of this baseline method. 
2 

1 http://mtg.upf.edu/download/datasets/eep-dataset 
2hup://www.ient.rwth-aachen.de/cms/dafx09/ 
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(b) Quantized components multiplied with bow velocity. 

Fig. 2: Motion representation. 

2. MM Initialization [21] - This is a multi modal method where 
the audio activation matrix is initialized with the motion acti­
vati on matrix during the NMF parameter estimation. 

3. MM Clustering [21] - Here, after performing NMF on au­
dio, basis vectors are clustered based on the similarity be­
tween motion and audio activations. For details the reader is 
referred to [21]. 

Note that, for the latter two methods, as done by the authors, 
we utilize the Itakura-Saito (IS) divergence cost function. Code pro-



Mixtures 
Proposed Method MM lnitialization MM Clustering MelNMF 

SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR 
PI 2.78 6.06 6.60 -2.00 1.06 3.75 -7.25 -0.77 8.89 -1.15 1.48 5.45 

Set 1 
P2 -0.37 1.81 6.17 -1.79 1.87 3.25 -7.37 -1.30 9.31 0.56 3.55 6.56 
P3 0.97 3.85 5.81 -0.36 3.86 3.35 -6.45 -0.24 8.67 -2.64 0.32 4.80 
P4 2.01 4.79 6.52 -0.37 4.33 3.05 -6.86 -1.03 11.51 0.59 3.94 5.67 

Pl- vln + vIa 4.25 6.90 8.48 0.55 3.25 5.89 0.22 4.40 8.82 0.44 2.67 7.74 
PI - vln + cel 7.22 10.19 11.16 3.25 6.62 6.80 -3.99 1.77 18.77 3.56 7.30 8.40 

Set 2 
PI - vIa + cel 2.56 5.81 7.27 -1.17 0.97 5.53 -3.15 2.91 17.06 2.87 10.00 7.55 
P2 - vln + vIa 0.12 1.75 7.40 -2.32 0.55 3.85 -1.01 4.03 12.59 3.11 6.32 8.39 
P2 - vln + cel 5.97 9.10 10.20 4.98 9.95 7.16 -3.67 3.64 24.26 4.55 9.79 9.79 
P2 - vIa + cel 3.12 5.87 8.15 4.74 8.50 8.07 -3.52 3.08 17.49 4.94 9.23 8.49 

vln(Pl) + vln(P2) 3.57 5.85 8.54 0.47 3.61 5.11 1.30 3.44 9.09 0.84 1.96 9.76 
Set 3 vla(Pl) + vla(P2) -0.35 1.16 7.44 -1.37 0.43 6.13 -4.45 0.61 16.67 -1.71 0.82 4.73 

cel(Pl) + cel(P2) 3.66 5.94 8.62 2.07 5.79 5.86 -4.60 2.32 24.10 -0.42 2.22 6.08 

Table 1: SDR, SIR and SAR (measured in dB) for different methods on each mixture. Best SDR is displayed in bold. 

vided by Fevotte et al. [27] is used for standard NMF algorithms. 
The audio is sampled at 44.1 kHz. We compute the spectrogram 

with a Hamming window of size 4096 (92 ms) and 75% overlap for 
each 30 sec excerpt. Thus, we have a 2049 x N matrix. Here N 
is the number of STFT frames. Since the MoCap data is sampled 
at 240 Hz, each of the selected descriptors is resampled to match 
the N STFT audio frames. For all the runs the proposed method 
hyperparameters were set at a = 10 and ß = 0.3 after preliminary 
testing. As discussed in section 2.2, the number of components for 
each instrument is set to 4. NMF for each of the methods is run for 
100 iterations. For each mixture, all the methods are run 5 times and 
the reconstruction is performed using a soft mask. The average of 
each evaluation metric over these runs is displayed in Table 1. 

Evaluation metrics: the Signal to Distortion Ratio (SDR), the 
Signal to Interference Ratio (SIR) and the Signal to Artifacts Ratio 
(SAR) are computed using the BSS-EVAL Toolbox version 3.0 [28]. 
All the metrics are expressed in dB. 

3.3. ResuIts and Discussion 

The results are as presented in Table 1, where the best SDR for 
each mixture is displayed in bold. Our method c1early outperforms 
the baselines and the state-of-the-art methods for highly challeng­
ing cases of trios (Set 1) and duos involving the same instrument 
(Set 3). For the third set of mixtures, audio only methods would 
not be able to cluster the spectral patterns weIl. Motion informa­
tion c1early plays a crucial role for disambiguation and indeed the 
proposed method outperforms all the others by a large margin. 

Particularly, notice that the multi modal baselines do not perform 
weIl. The MM initialization relies on setting to zero the coefficients 
where there is no motion. This might not prove to be the best strat­
egy with such a dataset because even during the inactive period of 
the audio there is so me motion of the hand. On the other hand, mul­
timodal c1ustering depends on the similarity between source motion 
activation centroids and audio activations. As we observe during the 
experiments, such a similarity is not very obvious for the data we 
use and the method ends up assigning most vectors to a particular 
cluster. 

Despite its overall good performance it is worth noting that for 
trio mixtures the proposed method performs poorly with P2. In fact, 
all the mixtures involving the viola from the second piece seem to 
have worse performance than others. We note that the separation for 
the viola suffers. One possible reason for this could be that, for P2, 
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the motion descriptors of the viola with respect to the violin and the 
cello overlap in parts. As a consequence, the estimation of W a for 
such cases i s poor. 

We must emphasize that the optimal value for a, which is held 
constant here, would differ for each recording. Thus, it should be 
possible to tune that parameter to gain the best performance, as could 
be achieved by an audio engineer through a knob controlling a, in a 
real world audio production setting. As an illustration, consider the 
mixture of viola and cello from P2: if we search for the best a in the 
mean SDR sense within the range (1,15) , we find that mean SDR 
value of up to 5.97 dB can be reached at a = 1.5. Also, note that we 
work with a limited number of components which is probably not 
weil suited for so me of these cases. 

4. CONCLUSION 

We have demonstrated the usefulness of exploiting sound-producing 
motion for guiding audio source separation. Formulating it as a soft 
constraint within the NMF source separation framework makes our 
approach very flexible and simple to use. We alleviate the short­
comings of previous works, such as multiple parameter tuning while 
making no unrealistic assumptions about the audio environment. 
The results obtained on the multi modal string instrument dataset are 
very encouraging and serve as a proof-of-concept for applying the 
method to separate any audio object accompanied with its sound­
producing motion. The use of motion capture da ta is new and the 
proposed technique would apply to video data in a similar mann er. 

As part of ongoing work, we are investigating automatic extrac­
tion of motion activation matrix and ways to accommodate different 
number of basis components in both the modalities. 
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