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ABSTRACT

In the present work, we introduce a new probabilistic model
for the task of estimating beat positions in a musical audio
recording, instantiating the Conditional Random Field (CRF)
framework. Our approach takes its strength from a sophisti-
cated temporal modeling of the audio observations, account-
ing for local tempo variations which are readily represented
in the CRF model proposed using well-chosen potentials.

The system is experimentally evaluated by studying its
performance on 3 datasets of 1394 music excerpts of vari-
ous western music styles and comparatively to 4 reference
systems in the light of 6 reference evaluation metrics. The
results show that the proposed system tracks perceptively co-
herent pulses and is very effective in estimating the beat po-
sitions while further work is needed to find the correct salient
tempo.

Index Terms— Music Information Retrieval, Beat track-
ing, Conditional Random Fields.

1. INTRODUCTION

Beat tracking is a commonly addressed yet still challenging
task for researchers in Music Information Retrieval (MIR)
and related fields. It entails inferring, from the audio signal
observation, subjective musical notions such as instantaneous
tempo and beat positions inside the musical piece. It holds
an important and essential position for many automatic audio
and music analysis tasks where the extraction and exploitation
of information related to the musical rhythm is crucial.

In fact, the problem of estimating beat positions in a mu-
sical audio recording has been extensively addressed through
diverse solutions. A good overview of these different ap-
proaches can be found in [1, 2]. The first stage of most beat-
tracking systems consists in extracting the rhythmic informa-
tion through a discrete estimation of the musical onset posi-
tions or through the computation of a continuous onset likeli-
hood function, here referred to as the onset detection function.
Given that observation, the beat-period and the beat position
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can be estimated either successively or jointly, based on di-
verse deterministic or probabilistic methods.

A common approach for the estimation of the beat-period
is to construct an Inter-Onset-Interval histogram or to use a
spectral analysis method. Another popular approach is to rely
on a bank of resonating comb-filters [3, 4, 5], which has the
advantage of providing both beat-period and beat-phase infor-
mation.

When probabilistic models are considered, the tracking
of the beat-period and beat-phase information can be done
through dynamic programming [6, 7], particle filtering [8],
hidden-Markov model[5, 2].

In this paper, we introduce a novel probabilistic model
for the beat tracking problem, instantiating the powerful Con-
ditional Random Field (CRF) framework. Our approach is
largely inspired by the audio-to-score alignment system de-
scribed in [9, 10], which is here adapted to handle beat labels.

This model has the essential advantage of providing
a proper formulation of the task which enables us to di-
rectly solve the problem of tracking the beat-period and
beat-position as a probabilistic sequence labeling problem,
where the goal is to determine the most probable sequence
of beat-period and beat-position labels at every time instant.
Furthermore, the proposed CRF beat-tracking system can be
easily improved and extended by incorporating new observa-
tions

The outline of the paper is the following. In the next Sec-
tion, we formalize the beat tracking problem and formulate it
as a sequence labeling problem. Then Section 3 briefly recalls
the general CRF framework and describes our model for beat
tracking. Subsequently, we present an experimental study that
we have conducted to assess the performance of our proposal,
comparing it to 4 different reference systems, before we sug-
gest some conclusions in Section 5.

2. THE BEAT TRACKING PROBLEM

As previously indicated, a beat-tracking system has to both
estimate the beat-periods and the beat-positions. We propose
a new probabilistic system for their joint estimation given
the observation of features relating to onset and period likeli-
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Fig. 1. Example of tempogram for the song ”Angie” by the
Rolling Stones. The tempo is fluctuating around 65 beats per
minute (BPM).

hoods over time.
The front-end system extracting these feature observa-

tions relies on the method proposed by Alonso in [11, 12].
The features are extracted on a frame-by-frame basis and
consist of the following:

The Onset detection function which is computed from the
spectral energy flux of the input audio signal over time.
This produces a vector of onset likelihoods (one value
per time frame).

The Tempogram which gives an estimation of the salience
of periodicity candidates extracted from the detection
function using pitch detection techniques. This pro-
duces a matrix of periodicity likelihoods over time (a
vector of values per time frame) as illustrated in Fig-
ure 1.

For each signal frame, given the feature observations, we
propose to handle the beat-tracking problem as a sequence
labeling problem: to each frame is assigned a discrete beat-
period label and a discrete beat-phase label (i.e. the beat po-
sition inside a period), also named occupancy, as illustrated
and further detailed in Figure 2.

Let Y denote the sequence of period and occupancy val-
ues, and X the sequence of feature observations. Assuming
an appropriate model p(Y|X; θ) of the posterior probabilities
of target labels Y given features X, parametrised by θ, the
beat-tracking problem can be seen as the one of determining
the label sequence Ŷ such that:

Ŷ = argmax
Y

p(Y|X; θ) (1)

1 2 3 229 230 1 2 3 232 1

230 230 230 230 230 232 232 232 232 233

...

...

231

232Period

Occupancy ...

...

...

...

Time

F
r
a
m
e
 
#
1

F
r
a
m
e
 
#
2

F
r
a
m
e
 
#
3

F
r
a
m
e
 
#
2
2
9

F
r
a
m
e
 
#
2
3
0

F
r
a
m
e
 
#
2
3
1

F
r
a
m
e
 
#
2
3
2

F
r
a
m
e
 
#
2
3
3

F
r
a
m
e
 
#
4
6
1

F
r
a
m
e
 
#
4
6
2

F
r
a
m
e
 
#
4
6
3

Observation
Features

period=125 period=127

Fig. 2. Beat tracking as a labeling problem. In this exam-
ple, the observations are extracted at a frame rate of 250Hz
and the candidate tempo is around 65 BPM (i.e. a period of
230 frames). Each frame is assigned both a period label and
an occupancy label characterizing the relative frame position
inside that period. The frames labeled with occupancy #1 cor-
respond to the beat instant.

3. CRF FOR BEAT TRACKING

We solve the sequence labeling problem inherent to beat
tracking using Conditional Random Fields. CRF [13] are
a powerful class of discriminative classifiers for structured
input–structured output data prediction, which have proven
successful in a variety of real-world classification tasks
[14, 15]. Compared to Hidden Markov Models (HMM)
and more general Bayesian networks, CRFs draw their power
from both their discriminative nature and their non-oriented
graphical model structure as they model directly the poste-
rior probabilities of a sequence of N labels given feature
observations according to:

p(Y|X) =
1

Z(X)

N∏
n=1

Ψ(Y,X, n)︸ ︷︷ ︸
Transition

Φ(Y,X, n)︸ ︷︷ ︸
Observation

;

where Ψ(Y,X, n) and Φ(Y,X, n) are respectively transi-
tion and observation potentials at each time position n, which
play a similar role to transition and observation probabilities
found in HMM, except that the former are not proper prob-
abilities, hence the need for the normalizing term Z(X) that
guarantees that p(Y|X) is a well defined probability, which
sums to 1 [14].

In this work, we use a Markovian form of CRF, where
the transition potentials are defined on consecutive labels, in
a linear-chain fashion, and observation potentials depend on
single labels, so that:

p(Y|X) =
1

Z(X)
Φ(Y1,X)

N∏
n=2

Ψ(Yn, Yn−1,X)Φ(Yn,X).

(2)

The output variables (labels)

In our CRF system for beat-tracking, the output variables, Y
are composed of: i) the occupancy variables: D, which are
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discrete : Dn ∈ [1, ..., dmax]; and ii) the period variables: T,
also discrete : Tn ∈ [dmin, ..., dmax]);
where dmin and dmax are positive integers.

The observation sequences are the ones described in Sec-
tion 2 : i) the onset detection function sequence S and ii) the
tempogram matrix G (a sequence of vectors of periodicity
salience stored column-wise in G). For simplicity, let Gn[T ]
denote the salience of periodicity T at time frame n.

The observation potentials

The observation potentials, Φ(Yn,X), of equation (2) are de-
fined for the period and occupancy labels occurring at frame
n, given the whole sequence of observations X.

In the proposed system, we factorize the observation po-
tentials in two distinct terms, Φ(Yn,X) = ΦT (Tn, Gn) ·
ΦD(Yn,S) where ΦT (Tn, Gn) = Gn[Tn] is directly derived
from the tempogram. For the second term, we infer the beat
location by correlating the onset detection function with a
parametrized periodic pulse ΠT (t) function whose definition
is derived from [16, 17] such as:

ΠT [t] = 1 + tanh γ

(
cos

(
2π

t

T

)
− 1

)
, for t ∈ [−2T ; 2T ]

(3)
where γ = 2, T is the considered musical period expressed
in samples at the frame rate and t is a time index in samples.
This simple operation favors the estimation of beat position
at location where the onset detection function is in phase with
the periodic pulse.

The second observation potential term is thus:

ΦD(Yn,S) = ΦD((Tn, Dn),S) = S[n−Dn + 1] ?ΠTn
[n]

where ? is the convolution operator.

The transition potentials

The transition potentials, Ψ(Yn, Yn−1,X), of equation (2) do
not depend on the observations X in the following model and
thus equals Ψ(Yn, Yn−1). These potentials are constructed as
follows.

First, tempo transitions are only allowed at the beat posi-
tions (i.e. when occupancy is labeled as 1). Following [18],
we assume that the tempo changes are relative rather than ab-
solute and that for example, the probability is the same for
doubling the tempo and for halving it. Tempo are thus con-
strained by the following transition penalty:

ht(Tn+1, Tn) =

exp

(
−γt

∣∣∣log Tn+1

Tn

∣∣∣2) , if Tn+1

Tn
≤ 2

exp
(
−γt |log 2|2

)
, if Tn+1

Tn
> 2

(4)
controlled by the parameter γt > 0.
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Fig. 3. Undirected graphical model representation for the pro-
posed CRF beat-tracking system at the time frame n. For
clarity, the dependencies between the variables (Dn, Tn) and
observations Sp outside the range [n− 1, n+ 1] are omitted.

As for the occupancy labels, the transition potentials cho-
sen constrain the occupancy to be incremented by 1 during
the whole period and to switch to 1 at the end the period. This
very simple constraint forces the coherence between the oc-
cupancy and period label values. We thus have:

Ψ(Yn, Yn−1,X) =


ht(Tn+1, Tn) · 1(Dn = 1)

if Dn−1 = Tn−1

1(Dn = Dn−1 + 1) · 1(Tn = Tn−1)

otherwise
(5)

where 1 is the indicator function. The dependency structure
of the probabilistic model thus specified is represented in Fig-
ure 3.

Decoding

The most probable label sequence for the model (2) can be
calculated by the Viterbi algorithm with the same complex-
ity as in a HMM (see [9] for further details about the decod-
ing implementation). However, one of the main advantages
of CRF is that they directly model the conditional distribu-
tion p(Y|X) i.e. the probability of the target labels given the
observation sequence. Also, the CRF framework relaxes the
conditional independence assumption of HMMs and thus Xn

is not supposed to be independent of all other variables given
Yn and the whole feature sequence X can be safely used in the
calculation of the observation potential Φ(Yn,X). For further
details on CRF in general see [13, 19] and in the context of
MIR research see [9, 20].

Given the above-mentioned properties of the CRF, the
most substantial advantage of the proposed system in the
context of beat tracking is the good fit between the theoretical
model and the problem and the ability to extend this model
to incorporate other musical information or priors about the
data, in a more flexible way compared to HMM and Bayesian
networks.
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4. EXPERIMENTAL EVALUATION

We evaluate our system on three different reference datasets.
The first is the Ballroom dataset that contains 698 30-second
long excerpts of various Dance styles, such as Cha Cha,
Quickstep, Samba, Jive, Tango, Rumba, Viennese Waltz and
Slow Waltz 1. The tempo is rather stable within each song but
varies a lot across music styles; ranging from an average of
85 BPM in the Slow Waltz subset to a average of 205 BPM
in the Quickstep subset. The second dataset is the Klapuri
dataset that contains 474 60-second long excerpts of Classi-
cal, Electronic/Dance, Jazz/Blues, Hip Hop/Rap, Rock/Pop
and Soul/RnB/Funk music styles [5]. The tempo can change
considerably inside a song, especially in Classical and Jazz
music. The third dataset is the Hainsworth dataset that con-
tains 222 60-second long excerpts of Dance, Rock/Pop, Jazz,
Folk, Classical and Choral music styles [8]. The tempo can
here also change considerably inside a song and has a wide
range inside each music style, ranging from 60 BPM to 160
BPM and even 200 BPM in Jazz music.

We use two sets of standard evaluation measures, the
F-measure [21] and the continuity-based evaluation CMLc,
CMLt, AMLc and AMLt [5] [8] [22]. The F-measure is the
harmonic mean of precision and recall rates. The precision
is the ratio of correctly detected beats among all detected
beats and the recall is the ratio of correctly detected beats on
annotated beats. Correct detections occur when an estimated
beat position falls within a tolerance window centered around
a ground-truth beat position. We use two types of tolerance
window. The first is the standard fixed 70 ms tolerance win-
dow as used in the MIREX audio beat tracking evaluation
initiative for example2. The second is a relative beat period
precision window of 0.1 [2]. The tolerance window is thus
a percentage of the local beat period. This is interesting as
in the case of a wide range of tempo in the datasets, a fixed
tolerance window can be too restrictive for slow paced songs
and too permissive for fast paced songs. The continuity-based
evaluation measures are used with a 17.5% precision window.
While the F-measure tracks the instantaneous performance of
a beat tracker, those measures track the correct estimations
of continuous parts of the signal. CMLc tracks the longest
continuous sequence of correctly estimated beats at the cor-
rect metrical level, while CMLt tracks the sum of all those
sequences. AMLc tracks the longest continuous sequence of
correctly estimated beats but allows octave errors3. AMLt
also allows octave errors and tracks the sum of continuous
sequences correctly estimated. These measures are computed
from the evaluation toolbox in [23].

We compare the performance of our beat tracking system
to 4 other reference methods [7, 24, 25, 2]. Results are given

1www.ballroomdancers.com
2http://www.music-ir.org/mirex/wiki/2014:

Audio_Beat_Tracking
3Where beats are detected at half or twice the annotated rate

in Table 1 and show that our proposal is competitive with the
others. Further, one can see a trend across datasets, that is
[25] produces the best results in terms of F-measure and cor-
rect metrical level, while our system produces the best results
with the continuity based evaluation measures that allow oc-
tave errors (AMLc and AMLt). This indicates that our system
is able to finely follow the tempo variations and track the beats
in a continuous fashion. However, it is prone to errors relating
to situations where the tempo is estimated to be twice as fast
or twice as slow as the one annotated.

Method Fmeas
70 ms

Fmeas
0,1

CMLc CMLt AMLc AMLt

Ballroom dataset
CRF 74.6 72.9 49.8 50.2 87.3 88.6
[24] 73.9 69.9 55.9 57.7 84.7 87.3
[25] 80.8 77.7 60.0 61.6 82.7 85.8
[7] 69.7 62.8 27.9 31.8 67.6 81.8
[2] 77.4 71.4 53.8 55.5 85.9 87.9

Klapuri dataset
CRF 69.6 67.1 46.8 50.5 76.4 87.1
[24] 67.9 64.5 50.8 58.4 66.2 79.2
[25] 72.9 69.9 54.1 60.6 67.8 79.7
[7] 61.8 54.6 14.7 20.1 38.1 69.4
[2] 70.2 66.0 51.8 61.7 65.8 81.3

Hainsworth dataset
CRF 64.6 61.4 45.0 49.6 74.4 85.8
[24] 66.9 62.4 53.4 61.0 69.1 79.2
[25] 71.5 67.6 57.8 64.3 72.9 82.5
[7] 60.5 51.6 14.9 20.5 39.1 69.6
[2] 66.4 61.0 52.0 60.6 68.6 81.6

Table 1. Beat tracking results for the three datasets. CRF
stands for the method proposed in this article.

5. CONCLUSION

In this paper, we have proposed a novel probabilistic approach
to automatic beat tracking. Considering the problem as a
sequence labeling one, our proposal exploits a sophisticated
temporal model on top of features composed of a tempogram
and an onset detection function. In this model, local tempo
variations are captured through well-chosen potentials speci-
fying a conditional random field that allows for locating beats
at the granularity of short-time analysis windows.

Compared to reference beat tracking systems, ours per-
forms competitively and obtains the best scores on all datasets
on two evaluation measures (AMLc and AMLt), while being
perfectible in terms of F-measure.

Given the simplistic nature of the features used in this
work, our proposal holds a great promise towards improved
beat tracking, and by extension downbeat detection, as
higher-level features are considered. These are some of
the directions that will be explored in future work.
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