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ABSTRACT

Acoustic scene classification is a difficult problem mostly due

to the high density of events concurrently occurring in audio

scenes. In order to capture the occurrences of these events

we propose to use the Subband Power Distribution (SPD) as

a feature. We extract it by computing the histogram of ampli-

tude values in each frequency band of a spectrogram image.

The SPD allows us to model the density of events in each fre-

quency band. Our method is evaluated on a large acoustic

scene dataset using support vector machines. We outperform

the previous methods when using the SPD in conjunction with

the histogram of gradients. To reach further improvement, we

also consider the use of an approximation of the earth mover’s

distance kernel to compare histograms in a more suitable way.

Using the so-called Sinkhorn kernel improves the results on

most of the feature configurations. Best performances reach a

92.8% F1 score.

Index Terms— Acoustic scene classification, subband

power distribution image, Sinkhorn distance, support vector

machine

1. INTRODUCTION

The main objective of acoustic scene classification (ASC) is

to identify the acoustic environment in which the sound was

recorded directly from the audio signal. The interest for ASC

has been increasing in the last few years and is becoming

an important challenge in the machine listening community.

Despite the somewhat limited performances of current ASC

methods, they already have numerous applications in real

life such as robotic navigation [1] or forensics [2]. As many

context aware devices only use visual information to adapt

to their current location, complementary information can be

given by analysing the surrounding audio environment.

Due to the large variety of sound events possibly occur-

ring in an audio scene, characterising an acoustical environ-

ment as a whole is known to be a difficult problem. Many

early works in ASC have tried to use various methods from

speech recognition or event classification methods. Moreover,
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the specificity and complexity of general acoustic scenes can-

not be well described by general purpose methods. Indeed,

it is now widely recognised that specific methods need to be

developed for ASC.

As mentioned above, early works in ASC were heavily

inspired by speech recognition systems, for instance features

like Mel Frequency Cepstral Coefficients (MFCC) [3] have

been widely explored, they are often used as a baseline sys-

tem for classifying audio scenes. Several other conventional

features have also been tested such as low level spectral fea-

tures (zero-crossing rate, spectral centroid, spectral roll-off)

[4], linear predictive coefficients [5] or auditory filter features

such as Gammatones [6]. Some other works focused more

on designing new features capable of describing the scene as

a whole. This leads to more complex features such as ex-

pansion coefficients based on a decomposition over a Gabor

dictionary [7] or even minimum statistics of a spectrogram

to describe the acoustical background of a scene [8]. Many

of these features are extracted locally frame by frame which

naturally leads to an effort on finding a proper temporal mod-

elling. The temporal information has often been taken into

account by using various statistical functions or by analysing

the features recurrent behaviours using recursive quantitative

analysis (RQA) [9]. In some cases features are extracted from

the time frequency representation of the full audio excerpt, for

instance features such as the histogram of gradients (HOG)

based on constant Q-transform of the complete signal [10].

In this paper we also follow the trend of using features

based on a long-term time-frequency representation. Our

work significantly improves the state of the art results on

a large ASC data set by combining different spectrogram

image features and using an adapted kernel for the classifi-

cation. Specifically, we propose to use the Subband Power

Distribution (SPD) as a feature for ASC. The SPD has pre-

viously been used to compute features for acoustic event

classification [11], it represents the distribution over time of

the time-frequency pixels in a spectrogram image in each fre-

quency band. In the ASC context, by computing a histogram

of the power spectrum amplitudes in each frequency band

we intend to capture the density and the energy of events in

a given band for each acoustic scene. The use of the SPD

complements the previous proposal of applying Histogram of
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Gradients to acoustic scene classification [10]. The HOG fea-

tures capture the directions of the variations in a spectrogram

image. In order to improve the classification we use the HOG

features and the SPD simultaneously to characterise both the

variations and the content of the scenes power spectrum. We

also explore the use of perceptual loudness as an alternative

time frequency representation for the extraction of the SPD

features. Finally, since a support vector machine (SVM) is

used to classify the audio scene classes, we focus on finding

a more suitable distance between the features. In order to

have a kernel adapted to the classification of histograms, we

choose to compute it based on the Sinkhorn distance which is

an approximation of the earth mover’s distance (EMD) [12].

The rest of the paper is organised as follows. Section 2

describes the SPD feature extraction. Section 3 details the

use of the earth mover’s distance to design the new kernel.

Section 4 describes the data set and our experiments, before

Section 5 concludes the work.

2. FEATURE EXTRACTION

2.1. Modelling the event density

The main difficulty in the acoustic scene classification field is

the high quantity of information an audio scene contains. In

only a few seconds of audio recorded in an urban environment

one can find an important number of different sound sources

that each contribute to the acoustic signature of the scene. The

first supposition made is that all these sound sources corre-

spond to events (such as a car horn) that are characteristic of

certain environments (such as a street). One can also suppose

that these events have a rather constant spectral distribution

and that having a way of identifying how often these spectral

distributions happen in a given example would help character-

ising the different environments. In order to capture the oc-

currences of these events, or at least of the repeating spectral

content, we propose to use the Subband Power distribution

image. The SPD image approximates the distribution of the

spectrogram amplitudes in each subband using histograms.

The SPD will allow us to approximate for a given scene: in

what frequency bands the sounds events are, how often they

occur and finally how loud they are. Moreover, for scenes that

contain constant background sounds across the whole exam-

ple (such as a car engine), the SPD will also be able to capture

this information by having a high value in the bin correspond-

ing to the background sound’s amplitude interval.

While we expect the SPD features will provide crucial in-

formation for characterising the scenes we suppose they may

not be sufficient. Even if the HOG features already give the

best results on a few ASC data sets [10], they capture differ-

ent aspects of the spectrogram image. Because they model

the directions of the variations in the time frequency image,

having a way of describing the content of the time frequency

representation before looking at its variations can aid the clas-

Fig. 1: Flowchart of the proposed acoustic scene classification

method

Fig. 2: (Left) Loudness spectrogram of a ”kidgame” sample

(right) SPD image

sification. The SPD features are not meant to outperform the

HOG features alone but rather give complementary informa-

tion by the concatenation of the two different features. Using

the SPD in conjunction with the HOG will prove to achieve

a better characterisation of the spectrogram images and will

consequently lead to improved classification results.

2.2. The SPD extraction

The SPD as well as the HOG are extracted from a spectrogram

image. A constant Q-transform (CQT) is used in [10] to com-

pute the HOG features. The CQT has log-scaled frequency

bands which usually provides an appropriate representation

for analysing sounds. Instead, we propose to use the percep-

tual loudness time frequency representation in order to better

mimic the human auditory system. The Loudness allows us

to have a more similar frequency scale to the human auditory

system to model the human understanding of sounds. The

loudness coefficients correspond to the energy in each Bark

band normalized by its overall sum. Because the choice of

using the SPD was motivated by the human comprehension

of audio scenes, we believe that using a spectrogram based on

the Bark bands will improve the description of the acoustic

scenes. Figure 2 shows an example of a SPD image extracted

from a loudness spectrogram.

The extraction of the SPD features is similar to the proce-

dure for extracting the HOG as the two descriptors are meant

to be combined for the classification. In order to get the SPD

we start by computing a spectrogram image of each full au-

dio example in the data set. The SPD features are extracted by

computing a histogram of the pixel values in each frequency

band of the spectrogram image. We split the pixel value range

of the image into a fixed number of amplitude intervals and

simply count the number of pixels that are in each amplitude

interval for every frequency band. We finally obtain as many

histograms as frequency bands initially in the spectrogram,
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the concatenation of all the histograms (one per band) will

form the feature used a for the classification.

3. USING THE SINKHORN KERNEL FOR SVM
CLASSIFICATION

3.1. Changing the kernel

The experiments we run to evaluate the spectrogram features

use a support vector machine for the classification. It is com-

mon to change the feature space by using a SVM with a non

linear kernel when dealing with complex data. For instance,

the Gaussian kernel e−
‖x−y‖2

2σ2 is a widely used kernel in many

applications including ASC methods. Instead, we propose to

use the earth mover’s distance (EMD) [12]. The EMD kernel

is known to compare histograms and distributions in a more

suitable way than other classic distances. Actually, to avoid

the overwhelming complexity of EMD algorithms we use an

approximation of the EMD called the Sinkhorn distance [12].

3.2. A distance for histograms

The earth mover’s distance (EMD) is a formulation of the op-

timal transport distances widely used in computer vision. The

EMD and the optimal transport distances have proven to be a

powerful geometry to compare probability distributions. By

fixing a cost function representing the cost of moving infor-

mation from a histogram bin to another, one can define a new

distance between features as the solution of an optimal trans-

port problem. The principal advantage of using the EMD for

our application is that we can incorporate prior knowledge

about our features by means of the cost function. In fact one

can adjust the cost of moving information from an amplitude

interval at a fixed frequency to another one. The importance

of the frequency position or the amplitude range can be tuned

in order to obtain a better discrimination of the classes than

with the Gaussian kernel. If we consider M amplitude inter-

vals and N frequency bands the SPD feature H can be written

as:

H = (hf1a1
, ..., hf1aM

, ..., hfNa1
, ..., hfNaM

) ; (1)

where fi is the index of the corresponding frequency band

and aj the index of the amplitude intervals. We then propose

to use the following cost function

c(hf1a1
, hf1a1

) = |fk − fi|p + |al − aj |q ; (2)

where p and q are positive parameters that can adjust the im-

pact of the frequency and the amplitudes when comparing his-

togram bins. This adjustment can be useful if we feel the data

used for classification is better characterized by the presence

of information in a frequency band or by the general ampli-

tude distribution of the spectral content in the time frequency

image. In our case, the data set described in the following sec-

tion contains many different acoustic environments each very

dense in audio events. The cost function will be kept rather

general to allow it to penalise distant frequencies and distant

amplitudes.

Finally, we need to compute the cost matrix C necessary

to solve the optimal transport problem, the matrix C contains

the pairwise costs for each histogram bin couple. When using

the feature concatenation we do not want to allow any trans-

fers from the HOG to the SPD. To do so, the cost between a

bin from the HOG and a bin from the SPD feature is set to

an arbitrarily high value. In this case, the bin couples coming

from the same feature type still follow the cost function (2).

3.3. The Sinkhorn kernel for classification

The major downside of using the earth mover’s distance is

its complexity, even the best implementation is not meant to

be used with histogram dimensions over a few hundreds. To

avoid such a restriction, we exploit a recent work on optimal

transport that offers huge improvement in computation time

by adding an entropic constraint to the problem controlled

by a regularisation parameter λ [12]. The optimum obtained

is also a distance called the Sinkhorn distance which corre-

sponds to an upper bound to the earth mover’s distance. Us-

ing this faster computation of optimal transport, one is able

to solve the optimal transport on the proposed features in a

reasonable time. Giving the algorithm the cost matrix C and

a regularisation parameter λ for the entropic constraint, the

Sinkhorn distances between each feature vector are obtained.

The Sinkhorn distances are used to approximate the EMD ker-

nel for the support vector machine classification. Finally, the

kernel function k used to define the Sinkhorn kernel can be

written as:

k(x, y) = e−
S(x,y)

σ2 . (3)

Where S(x, y) is the Sinkhorn distance between the two fea-

ture vectors x and y.

4. EXPERIMENTAL EVALUATION

4.1. The Dataset

We evaluate the spectrogram features and the Sinkhorn ker-

nel on the LITIS Rouen data set for acoustic scene classifica-

tion [10]. To our knowledge it is by far the largest publicly

available data set for ASC. This data set contains 1500 min-

utes of urban audio scenes recorded with a smartphone, split

into 3026 examples of 30 seconds without overlapping and

forming 19 different classes. Each class corresponds to a spe-

cific location such as in a train station, in an airplane or at

the market. Since this data set has been released recently, the

only published results were obtained using the HOG features

compared to various methods based on MFCC.
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Precision Recall F1 Score Accuracy

Gaussian Kernel with CQT

[10] 91.7 - - -

HOG 91.2 90.2 90.5 91.2

SPD 90.8 89.2 89.7 90.2

HOG+SPD 93.3 92.5 92.8 93.4
Gaussian Kernel with Loudness

HOG 90.4 88.4 89.1 89.4

SPD 88.5 87.2 87.5 87.5

HOG+SPD 92.4 91.5 91.7 92.0
Sinkhorn Kernel with CQT

HOG 91.4 90.3 90.7 91.3

SPD 88.7 86.9 87.4 88.6

HOG+SPD 92.3 90.6 91.4 92.3
Sinkhorn Kernel with Loudness

HOG 92.2 92.0 92.0 92.0

SPD 90.1 89.0 89.2 89.6

HOG+SPD 93.2 92.4 92.6 93.0

Table 1: Summary of the different experiments comparing the

features, the time frequency representation and the kernel for

the SVM. The results all have a 0.1 standard deviation.

4.2. Classification protocol

All the experiments use the same training-testing splits sug-

gested by the creators of the LITIS data set to ensure com-

parable results. All the features and distances we use will

follow the same classification scheme using a support vector

machine. The Sinkhorn kernel for the SVM is compared to

the Gaussian kernel. The results are averaged over 20 train-

test splits of the data. In each split 80% of the examples are

kept for training and the rest are for testing. In order to esti-

mate the best regularisation parameter and the best σ for the

Gaussian kernel we perform a grid search on these parameters

for each cross-validation iteration. To do so, we split evenly

the training set 5 times into a learning and validation set and

we keep the parameters giving the best average result on the

5 validation subsets.

4.3. Comparing the addition of SPD features

In the first part of our evaluation we look into the benefits of

using the concatenation of HOG and the SPD as the features

for the classification. The HOG features are extracted from

a time frequency representation image of the whole scene re-

sized to 512 × 512 by bicubic interpolation. Signed orienta-

tions as well as a frequency pooling are used to compute the

HOG. More details about the HOG possible settings are given

in [10]. To compute the SPD we do not re-size the time fre-

quency representation as the samples in the data set are all of

equal length. The best results have been found using 20 bins

Fig. 3: F1 score on 4 scene classes obtained with the loudness

and the Sinkhorn kernel

corresponding to 20 linearly spaced amplitude intervals in the

pixel value range. All the features have been preprocessed in

order to have zero mean and unit variance.

Table 1 summarises the results obtained and shows that

the performances depend on the time frequency representa-

tion and on the kernel used for classification. Most impor-

tantly, the best F1 score on all the proposed settings is ob-

tained with the feature concatenation. This supports the as-

sumption that the SPD features generally give complementary

information to the classifier as they do not describe the same

phenomena as the HOG. The best result obtained so far is a

92.8% F1 score using the concatenation of the two features.

Previous state of the art on this data set was of 91.7% preci-

sion using only the HOG features with different settings while

a 93.3% precision is reached with the feature concatenation.

The difference between the best precision results obtained

with concatenation and the previous best precision score is

statistically significant at 5%. In order to understand the dif-

ferences between the two features we show the F1 score ob-

tained on a few of the classes in Figure 3. HOG features have

good performances on classes such as bus or car (and all other

public transports). These locations often do not have a located

frequency signature because of the presence of acceleration

sounds in the examples. Because the HOG are designed to

capture evolutions in the spectrogram, they are expected to

work well on classes containing acceleration sounds. On the

other hand, the SPD features outperform the HOG on classes

such as shop or student hall. Both of these classes have mostly

a stable frequency signature over time due the high density of

events occurring during the recorded examples.

4.4. Using the Sinkhorn kernel

The EMD kernel for the classification has been computed us-

ing the light-speed implementation of the Sinkhorn distance

using the cost function described in (2). The cost matrix has

been divided by its median value and the regularisation pa-

rameter λ is set to 11 as it consistently gives better results.

We tested different values of the parameters p and q in (2)

for each feature set, the results in Table 1 are obtained with

the best parameters we found so far. First, we see that the

Sinkhorn distance gives similar results to the Gaussian kernel

on the concatenated features. The way the concatenation is
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taken into account in the cost function could explain the lack

of improvement. Having two different kernels corresponding

to the HOG and the SPD could lead to better results using

multiple kernel learning but would bring even more parame-

ters to tune.

Using the Sinkhorn kernel improves the F1 score for four

out of the six feature configurations tested in Table 1 but it

does not help improving the overall best result on the data

set. The results are not yet worth the increased complexity

compared to the Gaussian kernel. Although we could possibly

increase the performance by focusing more on the parameter

tuning it would still be hard to use on much larger data sets

despite using the lightspeed implementation.

4.5. The Loudness spectrogram instead of the CQT

The previous experiments were tested with two different time

frequency representations, the constant Q-transform, initially

used to compute the HOG and the loudness power spectrum

as discussed in Section 2. The CQT is extracted using a fre-

quency range from 1Hz to 10kHz using 8 bins per octave. The

perceptual loudness power spectrum has 24 frequency bands

and is extracted using the YAAFE implementation [13]. The

results show that using the loudness slightly improves the F1

scores compared to the CQT for all the features tested with the

Sinkhorn distance kernel. On the other hand, it does not help

the Gaussian kernel SVM exept for the HOG feature. The

loudness power spectrum also leads to features with lower di-

mension (because of the reduced amount of frequency bans)

which helps lowering the computation time of the Sinkhorn

distance algorithm and of the classification in general.

5. CONCLUSION

In this paper we proposed to use the Subband Power Distribu-

tion image as a feature for acoustic scene classification lead-

ing to a more robust representation of the scene when used

jointly with the HOG features. An experiment run on the

largest available data set proved that adding the SPD to the

HOG significantly improves the state of the art results. We

also discussed the interest of using the earth mover’s distance

to provide a more suitable distance between our features. The

Sinkhorn kernel does not offer a consistant increase in perfor-

mance compared to the Gaussian kernel. Finally we looked

into using a loudness spectrogram instead of a constant Q-

transform in order to model the human auditory system. The

loudness does provide slightly better results when used with

the Sinkhorn kernel.
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