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ABSTRACT

In this paper we propose a supervised Nonnegative Matrix Factor-
ization (NMF) model for overlapping sound event detection in real
life audio. We start by highlighting the usefulness of non-euclidean
NMF to learn representations for detecting and classifying acoustic
events in a multi-label setting. Then, we propose to learn a classifier
and the NMF decomposition in a joint optimization problem. This
is done with a general β-divergence version of the nonnegative task-
driven dictionary learning model. An experimental evaluation is per-
formed on the development set of the DCASE 2016 task3 challenge.
The proposed supervised NMF-based system improves performance
over the baseline and the submitted systems.

Index Terms— Acoustic Event Detection, Nonnegative Matrix
Factorization, Supervised Feature learning

1. INTRODUCTION

Acoustic event detection (AED) is the task of transcribing an audio
recording into a symbolic description representing the sound events
occurring in an acoustic scene. AED requires a system to be able to
classify the events present in the recording as well as their position in
time. The interest for AED has kept increasing in the last few years
in part due to the release of new datasets along with the organization
of international evaluation campaigns including CLEAR 2007 and
the DCASE 2013 and 2016 challenges [1, 2]. Enabling devices to be
aware of the different acoustic events occurring in their surroundings
has a wide variety of potential applications such as surveillance [3],
health monitoring [4] or multimedia indexing [5].

The AED task can be separated into two different sub-problems
depending on whether the events to be detected can overlap in time.
The first one is referred to as monophonic event detection, where
only one event label can be present at any given time. Therefore, this
setting is closer to a standard multi-class classification problem. It
has often been addressed using speech inspired techniques. Indeed,
a common approach is to represent local frames by Mel-Frequency
Cepstral Coefficient (MFCC) features modeled by Hidden Markov
Models (HMM) with Gaussian Mixture Models (GMM) emission
probabilities for detection [6]. Another popular approach is to con-
sider standard classifiers such as support vector machines [7] trained
on sliding windows of the signal.

The second problem, much more challenging, is polyphonic
event detection. In this case, the different events in the scene
can overlap in time, turning AED into a multi-label classification
problem. A first possible approach is to train as many binary
event/background classifiers as there are possible event labels [2].
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The other, more common strategy, is to threshold the outputs of re-
gression or generative probabilistic models, allowing multiple labels
to be detected at a given time. A few works considered the use of
Nonnegative Matrix Factorization (NMF), where spectral templates
are learned on isolated events. Then, detection is performed by
applying a threshold to the activation matrix obtained from decom-
position of the test data. For example, this has been done using
a PLCA model constrained with a HMM [8] or by decomposing
the data matrix and a label matrix in a joint matrix factorization
problem [9]. More recently, especially with the organization of the
DCASE 2016 challenge, the popularity of Neural Network-based
systems for AED has strongly increased. This trend has started prior
to the challenge with the introduction of Recurrent Neural Networks
(RNN) for the task [10] offering improvements over the standard
approaches on a private dataset. Thereafter, most of the challenge
submissions were comprised of a variety of different deep neural
networks models including Recurrent Neural Networks (RNN) [11],
Gated RNNs [12] and Convolutional NNs [13]. Interestingly, only
one of them managed to outperform the MFCC/GMM baseline on
the final evaluation set [11].

In this paper, we further study the usefulness of NMF for over-
lapping AED in real world audio by showing the potential of both
unsupervised and supervised NMF. Contrary to other NMF-based
methods for AED, we do not have access to the isolated events dur-
ing the training. In fact we work in the context of the DCASE 2016
challenge where only annotated real life recordings are available for
training. Here we use NMF as a feature learning technique, where
a dictionary of spectral templates is learned from the training data
before classifying separately the projections on that dictionary. We
deal with the multi-label problem by training a multinomial logistic
regression classifier only with the frames that do not contain over-
lapping events, and then threshold the output probabilities during the
detection stage. We then study the usefulness of a supervised NMF
model referred to as Nonnegative task driven dictionary learning
(TD-NMF) originally introduced in [14, 15]. In TD-NMF, the clas-
sifiers and dictionaries are learned in a bi-level optimization problem
in order to obtain more discriminant dictionaries. This is a first at-
tempt at using the TD-NMF with the β-divergence for a multi-label
classification problems. Our NMF-based systems are evaluated on
the development set of the 2016 DCASE challenge. We show that
both the supervised and unsupervised versions yield performance
which is competitive with the best neural network-based systems
submitted to the challenge. Finally, we also discuss the potential
and benefits of non-Euclidean TD-NMF for polyphonic AED. Its
usefulness for detecting overlapping events is highlighted on a novel
evaluation paradigm, by scoring only on parts of the audio contain-
ing overlapping events in the annotation.

The paper is organized as follows. The problem and the general
NMF approach are introduced in Section 2. The TD-NMF model is



described in Section 3. Experimental results are presented in Sec-
tion 4. Finally, conclusions and directions for future work are ex-
posed in Section 5.

2. ACOUSTIC EVENT DETECTION SYSTEM

2.1. Input representation

The NMF stage takes as input the time frequency representation V ∈
RF×N+ of the audio signals, where F is the number of frequency
bands and N is the number of time frames. The nonnegative matrix
V is build by concatenating the Mel-Spectrum extracted from each
recording in a training set. While many AED works rely on MFCC
as their input representation, it is also common to use perceptually
motivated time-frequency representation such as Mel-spectrograms
or Constant Q-transforms.

2.2. Unsupervised nonnegative matrix factorization

NMF is a well known technique to decompose nonnegative data into
nonnegative dictionary elements [16]. The goal of NMF is to find a
decomposition that approximates the data matrix V such as:

V ≈WH, (1)

with W ∈ RF×K+ and H ∈ RK×N+ . Many problems benefit from the
nonnegativity of the decomposition to learn better representations of
the data, especially in the audio processing field. In fact, most of the
time-frequency representations for audio signals contain only non-
negative coefficients. For multi-source environments like in AED,
the nonnegative constraints allow for interpreting the time-frequency
representation as a sum of different nonnegative sound objects, cor-
responding to the different events occurring in the scene. Given a
separable divergence Dβ , NMF is obtained by solving the following
optimization problem:

min
W,H

Dβ(V|WH) s.t. W,H ≥ 0. (2)

In this work Dβ represents the β-divergence [17]. The particular
cases of interest for the β-divergence are the Euclidean distance
(β = 2), Kullback-Leibler (β = 1) and Itakura-Saito (β = 0).
One property of the β parameter is that it influences the divergence’s
invariance to a scaling factor. Many audio signal processing appli-
cations often benefit from the non-Euclidean cases when performing
NMF.

2.3. Classification stage

After jointly learning the dictionary and the projections on the train-
ing data, we project the test data on the learned dictionary. The pro-
jections are then used as features for classification. The classifier is a
regularized linear logistic regression in its multinomial formulation.
Logistic regression has the advantage of outputting the class proba-
bilities for each data point. However, being a multi-class classifier,
it can not directly deal with the multi-label classification problem.
In order to overcome this limitation, we simply drop the frames as-
sociated with multiple labels in the training data. We then add a
label corresponding to the background, when no events are labeled.
This strategy allows us to train the classifier in a standard multi-class
fashion.

Then, in order to allow the system to predict multiple labels dur-
ing the test detection stage, we threshold the class probabilities for
each test frame. Therefore, overlapping events can be detected as

long as their probability in the given frame is above the fixed thresh-
old.

3. SUPERVISED NONNEGATIVE MATRIX
FACTORIZATION

The motivation behind using supervised NMF is to merge the NMF
and the classification stage in a common bi-level optimization prob-
lem. The goal is then to learn discriminative nonnegative dictionar-
ies of spectral templates with the objective of minimizing the clas-
sification cost. We start from a variant of the original Task-driven
dictionary learning model [14], which proposes a TD-NMF algo-
rithm to jointly learn an NMF with a multinomial logistic regression
classifier for acoustic scene classification [18]. Then, as the TD-
NMF algorithm in [18] is limited to the Euclidean case, we extend it
to include the possibility of using the Kullback-Leibler reconstruc-
tion cost. These changes are inspired from a previous work [15],
which proposed a first application of nonnegative task-driven dictio-
nary learning, by linking β-divergence NMF to a speech enhance-
ment criteria. Finally, in our case, the TD-NMF model jointly learns
a multinomial logistic regression and a NMF with a β-divergence
reconstruction cost.

The TD-NMF model first considers the optimal projections
h?(v,W) of the data point v on the dictionary W. The projections
are defined as solutions of the nonnegative projection with `1 and
`2-norm penalties expressed as in an elastic-net fashion:

h?(v,W) = min
h∈RK

+

Dβ(V|Wh) + λ1‖h‖1 + λ2‖h‖22; (3)

where λ1 and λ2 are nonnegative regularization parameters. Let
each data frame v be associated with a label y in a fixed set of la-
bels Y . We then define the classification loss to be a multinomial
logistic loss ls(y,A, h?(v,W)), a function of the optimal projection
h?(v,W), where A ∈ A are the parameters of the classifier. The
TD-NMF problem is now expressed as a joint minimization of the
expected classification cost over W and A:

min
W∈W,A∈A

f(W,A) +
ν

2
‖A‖22, (4)

with

f(W,A) = Ey,v[ls(y,A, h?(v,W))]. (5)

Here, W is defined as the set of nonnegative dictionaries con-
taining unit l2-norm basis vectors and ν is a regularization parame-
ter on the classifier parameters to prevent over-fitting. The TD-NMF
model in equation (4) is optimized with a stochastic gradient descent
algorithm as described in [18]. For the general β case, the expres-
sion of the gradient of f(W,A) with respect to the dictionary W
is provided in [15]. It is important to note that these expressions
only hold for β ≥ 1 as they rely on the convexity of equation (3).
Therefore, we will only be considering the Euclidean (β = 2) and
Kullback-Leibler (β = 1) versions of TD-NMF.

Once the model has been trained in the standard multi-class set-
ting, the multi-label prediction step is similar to one described in
Section 2.3. The data is projected on the learned discriminative dic-
tionary before thresholding the output class probabilities from the
model classifier.



4. EXPERIMENTAL EVALUATION

4.1. Dataset

Our proposed methods are evaluated on the development dataset of
the DCASE 2016 challenge for sound event detection in real life
audio (corresponding to the task 3) [2]. To our best knowledge,
it is the only publicly available non-synthetic polyphonic acoustic
event detection dataset proposing different environments. Each au-
dio recording in the dataset is associated with manually annotated
onset and offset event timings. The recordings were done in two dif-
ferent acoustic environments: home (indoors) and residential area
(outdoors). There are 10 to 12 recordings of 3 to 5 minutes duration
for both environments, which are split into 4 cross-validation folds
where each recording is used once in the test data. The list of event
labels as well as their number of occurrences are outlined in Table
1. The results of the evaluation campaign later confirmed it to be a
particularly challenging dataset. This can be attributed to the subjec-
tivity of the manual annotations as well as the lack of training data,
resulting in some events having a low amount of training examples.

4.2. Performance metrics

In a first stage we use the same performance metrics to rank the sub-
missions as in the DCASE challenge. The first one is the segment-
based F1 score. It is computed as the harmonic mean between pre-
cision and recall based on the total amount of false negatives, true
positives and false positives in one second segments. The second
metric is the segment-based acoustic event error rate (ER). The ER
is calculated by adding the number of substitutions, insertions and
deletions in each 1-second segment before dividing it by the total
number of events. The ER and F1 scores are computed over the en-
tire test set by evaluating all 4 test folds at once. We refer the reader
to [19] for more details and explanations about these metrics.

4.3. Experimental setup

The Mel-spectrum were extracted with the YAAFE toolbox [20] after
rescaling the signals in [−1, 1]. They were computed using 40 Mel-
bank filters on 40 ms frames with 50% overlap. The training data
matrix was scaled in order to have unit variance, the same scaling
factors were then applied to the test data.

The unsupervised NMF was applied in the `1 sparse formulation
[21] and optimized using multiplicative update rules as described in
[22]. The classifier was trained using the scikit-learn [23] imple-
mentation of the multinomial logistic regression using the L-BFGS
solver and the ν regularization parameter was fixed to ν = 10 after
testing.

The TD-NMF model is initialized with the W and A learned
from the unsupervised NMF system. For the Euclidean case (β =
2), the optimal projections in equation (3) were obtained using the
lasso function from the spams toolbox [24]. Whereas for other val-
ues of β, equation (3) was solved using multiplicative update rules.
The model was trained over I = 6 iterations (epochs) with a 0.001
initial gradient step for the projected gradient dictionary update. The
decaying of the gradient step over iterations follows the same heuris-
tic as suggested in [14]. The `1 and `2 regularization parameters
were set to λ1 = 0.5 and λ2 = 0 for both the NMF and TD-NMF.
Modifying those values did not provide any significant modifications
on the performance for both environments. After learning discrimi-
native dictionaries with TD-NMF, the data was fully reprojected on
that dictionary and the classifier was updated until convergence. Fi-
nally, the threshold for detection on the output probabilities was set

Home Residential Area
Event label Instances Event label Instances
(object) rustling 41 (object) banging 15
(object) snapping 42 bird singing 162
cupboard 27 car passing by 74
cutlery 56 children shouting 23
dishes 94 people speaking 41
drawer 23 people walking 32
glass jingling 26 wind blowing 22
object impact 155
people walking 24
washing dishes 60
water tap running 37

Table 1: Event labels and number of instances for the two environ-
ments of the DCASE 2016 development set.

Res. A. Home Mean
Method K β ER F1 ER F1 ER F1
NMF 8 2 61 54 88 27 74.5 40.5
NMF 8 1 60 58 88 27 74 42.5
NMF 16 2 60 56 87 29 73.5 42.5
NMF 16 1 59 58 86 30 72.5 44

TD-NMF 8 2 56 62 83 37 69.5 49.5
TD-NMF 8 1 58 60 85 34 71.5 47
TD-NMF 16 2 56 64 85 36 70.5 50
TD-NMF 16 1 55 64 86 34 70.5 49

Table 2: Error rate and F1 score on 1 second segments for NMF and
TD-NMF as a function of the dictionary size K and the divergence
β. Results are given for both environments of the DCASE dataset as
well as their average. The best results are highlighted in bold text.

to 0.3 for the Home environment and to 0.35 for Residential area.
These values were chosen after testing as they provided a good com-
promise between precision and recall. This difference is due to the
probabilities being more spread out for Home as it contains for pos-
sible outputs. The predictions were then filtered with a median filter
long of 7 time frames in order to discard outliers and shorter events.

4.4. Results with the challenge metrics

The results of both the NMF and TD-NMF using the standard met-
rics for the DCASE dataset are reported in Table 2. First, for every
configuration presented, the TD-NMF model outperforms the un-
supervised NMF. This shows that the supervised model is able to
learn more discriminative dictionaries representing the events in the
dataset. As the results slightly increase when augmenting the dic-
tionary size for NMF, TD-NMF performs just as well with smaller
dictionaries, keeping only the relevant information to minimize the
classification cost. As for the β parameter, decomposing the data
with the Kullback-Leibler divergence (β = 1) slightly increases the
performance over using the Euclidean distance for the unsupervised



Average.
Method Features ER F1

[2] GMM MFCC 91 23.7
[25] Random Forests MFCC 76 38.5
[12] GRNN Spectrogram 73 47.6
[26] RNN Mel energy 81.5 49.8

NMF Mel spectrum 72.5 44
TD-NMF Mel spectrum 69.5 49.5

Table 3: Error rate and F1 score on 1 second segments for NMF and
TD-NMF compared to the best methods on the DCASE development
dataset. The average results over both environments are reported.

NMF. However the β = 1 case does not present any increase in per-
formance for the TD-NMF, where the discriminative setting appears
to learn better dictionaries rather independently of the reconstruc-
tion cost. Regarding the different environments, the performance for
the home indoors recordings is significantly worse than for residen-
tial area. This can be a consequence of the higher number of labels
in the home environment as well as some of them corresponding to
more abstract concepts like (object) rustling. Moreover the system
can easily confuse certain labels as some of them overlap by defini-
tion. For example washing dishes describes an action that is likely
to produce dishes and water tap running events.

In Table 3 we confront our methods to the best submissions on
the development set of the DCASE challenge. The first method is the
challenge baseline [2], it is a MFCC-GMM approach where a differ-
ent two class GMM is trained for every label. We also include the 3
best submissions, with two of them being DNN-based systems. The
first one uses Gated recurrent neural Networks (GRNN) [12], the
second one is based on bi-directional recurrent neural Networks (Bi-
RNN) [26] and the last one on Random forests with MFCC features
[25]. The average results over the two environments show that both
our NMF and TD-NMF systems achieve better results on both met-
rics compared to the MFCC-GMM baseline. Moreover, even the un-
supervised NMF can reach a similar ER as the best system while still
having a lower F1 score. With the TD-NMF, our system attains lower
ER than all other submissions while keeping a similar F1 score. It
is important to note that no definitive conclusions can be drawn for
these results as the ranking of the challenge submissions changed a
lot when applied on the evaluation set. However they show the po-
tential of the proposed supervised NMF system compared to more
complex RNN-based systems. Indeed, the useful spectral informa-
tion for the event detection can be factorized in a 40 × 8 dictionary
and still achieve competitive performances.

4.5. Performance on overlapping events

In this section we propose to discuss the interest of our system for the
specificity of polyphonic AED by changing the context in which we
apply the evaluation metrics. The goal is to highlight the capability
of an AED system to detect and classify overlapping events. To do
so, we propose to keep the same metrics and experimental setting as
described in Section 4.3, but instead, we only score on segments that
contain more than one label. In practice this is achieved by discard-
ing, for the prediction and annotation, all frames associated with less
than two labels in the annotation. Moreover, we compute the ER and
F1 scores over shorter segment of 100 ms. This second change to the

Residential Area
All segments with overlap

Method K β ER F1 ER F1
TD-NMF 8 2 61 56 75 37
TD-NMF 8 1 59 58 71 42
TD-NMF 16 2 58 59 75 38
TD-NMF 16 1 60 57 70 43

Table 4: Error rate and F1 score on 100 ms segments for TD-NMF
in function of the dictionary size K and the divergence β. The all
segments denotes the case where all segments are used for evaluation
and the with overlap only keeps segments containing overlap. The
best scores are highlighted in bold text.

metric is motivated by the fact that events may overlap over short pe-
riods of time. Therefore, scoring on 1 seconds can be very forgiving
in this context, making the results less likely to translate the ability
of the system to deal with polyphony. Scoring on 100 ms segments
also has the advantage of providing a better idea of the temporal pre-
cision in the systems predictions. In order to differentiate the effect
of the two mentioned changes to the scoring strategy, we also include
the results computed over the full set of 100ms segments (including
non-overlapping events). This process is particularly relevant for the
residential area environment as almost 15% of the frames contain
overlapping events in the annotation. Whereas it is only the case for
5% of them in the home environment.

The results for TD-NMF obtained on the full set of 100 ms seg-
ments and on the ones containing overlap are reported in Table 4.
First, as expected, the ER and F1 scores on all segments indicate
that changing the scoring to 100 ms segments degrades performance
in all cases. However, the choice of β does not seem to have a signifi-
cant effect on the temporal precision of the predictions. In the case of
overlapping events, the Kullback-Leibler TD-NMF divergence out-
performs the Euclidean case by 4 to 5 points in each metric. This
follows the intuition that changing the divergence can be beneficial
in the presence of overlap, where the frequency structure of certain
events can be masked by others. While the β = 1 TD-NMF did
offer improvements on the full set of segments, this last result indi-
cates that its use should still be considered when dealing with highly
polyphonic data.

5. CONCLUSION

In this paper we presented a supervised NMF-based approach to
polyphonic AED. The TD-NMF approach has the advantage of
jointly learning a dictionary and a multinomial logistic regression
while being able to output overlapping labels. This TD-NMF for-
mulation also allows the choice of the β-divergence in the NMF
problem. An experimental evaluation was done on the development
set of the DCASE 2016 challenge for AED in real life audio. The
results show that both unsupervised and supervised NMF systems
can compete with DNN-based methods. TD-NMF showed improve-
ments over the best systems on this dataset. Finally, the potential
of the Kullback-Leibler TD-NMF for highly polyphonic AED was
highlighted by an evaluation performed on the segments containing
overlapping events. For future works, the focus will be on incor-
porating temporal modeling to the model in order to increase the
precision of the detection.
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